
October 1989 Report No. STAN-CS-89-1288

PB96-150313

Programming and Proving
with

Function and Control Abstractions

by

Carolyn Talcott

Department of Computer Science

Stanford University

Stanford, Caüfornia 94305

19970© W

WHS QtrALET nvHPEOEBB I

SECURITY CLASS.F'CAT;ON OC 'iiS=AGE

,r-^ORT DOCUMENTATION PAGE

PB96-150313

Form Approved
OMB No. 0704-0188

lb RESTRlCTlVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION. DOWNGRADING SCHEDULE

a PERFORMING ORGANIZATION REPORT NUMBER(S)

Stan-OS- l°i -IÄ?7
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL

(If applicable)

6c. ADDRESS {City, State, and ZIP Code)

8a. NAME OF FUNDING'SPONSORING
ORGANIZATION

Da-g-p-ft /fsro

8b OFFICE SYMBOL
(if applicable)

3 DISTRIBUTION/AVAILABILITY OF REPORT

5 MONITORING ORGANIZATION REPORT NLMBER(S)

7a NAME OF MONITORING ORGANlZAT.QN

7b ADDRESS {City, State, and ZIP Code)

8c. ADDRESS (City, State, and ZIP Code)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NCc- O ~i "i - g> H - <2 - ^'z. l (
10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classification) . I i I I

Pco^ca.mvwt*«; 0-*^ Troüt>v5
12. PERSONAL AUTHOR(S) ,

DRTT 13a TYPE OF REPOF 13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

lift
16 SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SU8-GROUP

18 SUBJECT TERMS {Continue on reverse if necessary and identify by block number)

19 ABSTRACT (Continue on reverse if necessary and

c^mfro I gtb?>^VQ.e?i/qVi . d<Lr.'0<Lei' Turkey ira w
d identify by block number) >

<ZUL. o\her scda-

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

D UNCLASSIFIED/UNLIMITED D SAME AS RPT D DTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL

DD Form 1473, JUN 86

21 ABSTRACT SECURITY CLASSIFICATION

22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Previous editions are obsolete

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS =>AGE

SECURITY CLASSIFICATION OF THIS P^GE

Rum is an intensional semantic theory of function and control abstractions
as computation primitives. It is a mathematical foundation for understanding
and improving current practice in symbolic (Lisp-style) computation. The theory
provides, in a single context, a variety of semantics ranging from structures and
rules for carrying out computations to an interpretation as functions on the com-
putation domain. Properties of powerful programming tools such as functions as
values, streams, aspects of object oriented programming, escape mechanisms, and
coroutines can be represented naturally. In addition a wide variety of operations
on programs can be treated including program transformations which introduce
function and control abstractions, compiling morphisms that transform control
abstractions into function abstractions, and operations that transform intensional
properties of programs into extensional properties. The theory goes beyond a
theory of functions computed by programs, providing tools for treating both in-
tensional and extensional properties of programs. This provides operations on pro-
grams with meanings to transform as well as meanings to preserve. Applications of
this theory include expressing and proving properties of particular programs and
of classes of programs and studying mathematical properties of computation mech-
anisms. Additional applications are the design and implementation of interactive
computation systems and the mechanization of reasoning about computation.

These notes are based on lectures given at the Western Institute of Computer
Science summer program, 31 July - 1 August 1986. Here we focus on program-
ing and proving with function and control abstractions and present a variety of
example programs, properties, and techniques for proving these properties.

DD Form 1473, JUN 86'Reverse)
SECURITY CLASSIFICATION OF THIS PAGE

Programming and proving
with

function and control abstractions

Carolyn Talcott

Computer Science Department, Stanford University
Stanford, CA, 94305

CLT@SAIL.STANFORD.EDU

Copyright © 1989 by Carolyn Talcott

Research supported by ARPA contract N00039-84-C-0211.

Table of Contents

1. Introduction 1

1.1. About 1Zum 1

1.2. An annotated reading list 3

1.2.1. Programming with function and control abstractions. 3

1.2.2. Semantics 4

2. Programming with function and control abstractions. 6

2.1. Multiple values and functionals. 7

2.2. Object behaviors. 8

2.3. Computing number tree products 9

2.3.1. Simple recursion on number trees. 10

2.3.2. Improving by pruning unnecessary computation. . 10

2.3.3. Continuation passing computation of the tree product. 11

2.3.4. Pruning by context noting and switching. ... 12

2.4. Streams as infinite sequences 15

2.5. Using coroutines to transform sequences 16

3. The meta world 21

3.1. Finite Sequences. • 21

3.2. Finite Maps 22

3.3. Inductive generation. 22

3.4. The S-expression data structure 23

4. The IZum world. 25

4.1. Domains of Ihim. 25

4.2. Operations and relations. 28

4.2.1. Computation rules 29

4.2.2. Computation sequences. 30

4.3. Abbreviations and notation. 32

4.4. Operational relations 33

5. Towards a theory of function and control abstractions . . 37

5.1. The language and its semantics 37

Table of Contents

5.2. The basic theory og

5.2.1. Logic of partial terms and approximation ... 39
5.2.2. In laws ... A-, 41
5.2.3. Some proof schemes 49

5.3. Computational laws 40

5.3.1. Extensionality and recursion 45

5.4. Some simple derived laws 4g

5.5. Puzzling with current puzzle. . 49

5.6. Context motion . c, 51
5.6.1. Context motion theorem 51

5.6.2. Consequences of the context motion theorem . . 53
6. Proving properties t-fi

6.1. Vari-ary functions and function schemes 55
6.2. Object behaviors. cq

6.3. The tree product pfns 60

6.4. Streams and coroutines. ßc

6.4.1. Streams . -_
 00

6.4.2. Coroutines 6g

6.4.3. Remarks 7<?

7. Derived properties and programs 73

7.1. Examples of simple derived properties 73
7.2. Definition of simple derived property 74

7.3. Derived programs 7fi

7.4. Analysis of tree product computations 80

7.4.1. Analysis of the recursive tree product pfn ... 81
7.4.2. Analysis of the escaping tree product pfn ... 86

7.5. Possible elaborations go
8. Conclusions
 89

9. References
 92

10. Appendix: Proofs and technical miscellaney 98

10.1. Properties of operational relations g8

10.1.1. A refinement of operational approximation and equivalence 98
10.1.2. Proofs of easy consequences 99
10.1.3. Substitution inf)

Table of Contents

10.1.4. Extensionality and recursion 102

10.2. Proofs of some simple derived laws 104

10.3. Proof of context motion theorem 107

10.4. Representation of Computation 113

10.5. Relation to standard definition of operational relations . 114

in

List of Figures

Figure 1. The S-expression data structure 23
Figure 2. Ihim Domains . . 25
Figure 3. Domain equations 26
Figure 4. Relations and operations of Ihim 28
Figure 5. Rules for stepping on
Figure 6. Example computation sequence 31
Figure 7. Evaluated position contexts 52
Figure 8. Example computation sequence 74
Figure 9. Derivation map action on forms 79

IV

§1 Introduction

1. Introduction

Thim is an intensions! semantic theory of function and control abstractions
as computation primitives. It is a mathematical foundation for understanding
and improving current practice in symbolic (Lisp-style) computation. The theory
provides, in a single context, a variety of semantics ranging from structures and
rules for carrying out computations to an interpretation as functions on the com-
putation domain. Properties of powerful programming tools such as functions as
values, streams, aspects of object oriented programming, escape mechanisms, and
coroutines can be represented naturally. In addition a wide variety of operations
on programs can be treated including program transformations which introduce
function and control abstractions, compiling morphisms that transform control
abstractions into function abstractions, and operations that transform intensional
properties of programs into extensional properties. The theory goes beyond a
theory of functions computed by programs, providing tools for treating both in-
tensional and extensional properties of programs. This provides operations on pro-
grams with meanings to transform as well as meanings to preserve. Applications of
this theory include expressing and proving properties of particular programs and
of classes of programs and studying mathematical properties of computation mech-
anisms. Additional applications are the design and implementation of interactive
computation systems and the mechanization of reasoning about computation.

These notes are based on lectures given at the Western Institute of Computer
Science summer program, 31 July - 1 August 1986. Here we focus on program-
ing and proving with function and control abstractions and present a variety of
example programs, properties, and techniques for proving these properties.

1.1. About Ihim

In the Lisp community, people traditionally speak of vanilla Lisp when refer-
ring to the pure first-order fragment which has a simple interpretation in terms
of partial functions on S-expressions. Following this tradition (and being fond of
rum-raisin ice cream) we have chosen to call our flavor of Lisp rum, and we use
Thim to refer to the theory we have developed about this flavor. Rum flavored
Lisp is very much like the Scheme dialect of Lisp [Steele and Sussman 1975], [Rees
and Clinger 1986].

The theory Ihim is based on an intensional semantic theory of function and
control abstractions as computation primitives. An intensional semantic theory is
a semantics based on a view of computation as a process of generating computa-
tion structures and an interpretation of programs as descriptions of computations.
Computation structures and rules for generating them determine an abstract ma-
chine for carrying out computations, thus providing an operational semantics. The

§1

operational approximation and equivalence relations induced by the operational
semantics provide a mathematical interpretation of the informal concept of "pro-
grams as black boxes". Roughly two programs are operationally equivalent if they
can not be distinguished by any computational context. The operational rela-
tions are preserved by substitution and abstraction and the recursion operator
(Y-combinator analog) computes the least fixed point of a functional with respect
to operational approximation. Thus we have also an extensional semantics.

Intensional properties of programs can be represented as properties of compu-
tation structures. Some examples are the number of multiplications executed, the
number of context switches, the maximum stack depth required in a computation,
and the trace of a computation. Extensional properties of programs are properties
of the function" computed. They can be expressed in terms of the operational
approximation and equivalence relations. Some examples of extensional proper-
ties are notions of equality for streams and coroutines and characterizations of
functional implementing strategies for searching tree-structured spaces.

An abstraction formalizes the notion of an object being given uniformly in
terms of some parameter. Application of an abstraction instantiates the param-
eter to the argument of the application. Function and control abstractions are
mathematically tractable computation primitives that allow one to express easily
a wide variety of computation mechanisms and programming styles and to reason
naturally about programs that employ these primitives. Function abstractions
describe the computation of (partial) functions. A function abstraction produced
by evaluation of a lambda expression contains information giving the interpreta-
tion of free variables occuring in the expression in the creation time environment.
In addition to ordinary functions, function abstractions can be used to represent
structured (possibly infinite) data such as tuples and streams, to represent the
continuation of a computation, to describe delayed or lazy evaluation, and (when
assignment abstractions are added) to represent objects in the object-oriented style
of computation. Control abstractions represent contexts built up in the process of
carrying out a computation. They provide a means of suspending and resuming
computations and can be used to program non-local control mechanisms such as
escaping and co-routining.

These notes are organized as follows. The second part of this introduction
is an annotated list of suggestions for further reading. §2 presents examples that
illustrate the use of multiple values and function and control abstractions to de-
scribe a variety of of computation mechanisms. It includes sample computations
and informal discussion of properties of the example programs and their computa-
tions. §3 summarizes the basic mathematical tools and notation that will be used.
In §4 the intensional semantic theory is presented, the operational relations that
are the Semantic basis for expressing properties of programs are defined, and key
are properties stated. In §5 a language for expressing properties of -Rum programs

§1 Introduction

is defined, its semantics is explained, some basic axioms and rules for proving as-
sertions are stated, and additional are laws derived as examples and tools for later
use. §6 contains precise statements and proofs of the extensional properties of
programs discussed in §2. In §7 methods for treating intensional properties are de-
veloped and illustrated. In §8 we summarize what we have done and discuss some
further developments and extensions of the theory. The appendix (§10) contains
proofs of theorems stated in §4 and other miscellaneous technical details.

1.2. An annotated reading list

This list is divided into two parts - roughly practice and theory - and each
list is sorted alphabetically. The list is included here, as it also serves as a mini
survey of concepts and results that form the background for Ihim and of related
work. Additional discussion of some of these papers can be found in [Talcott 1985;
Chapter II].

1.2.1. Programming with function and control abstractions.

«[Abelson and Sussman 1985] Text for introductory programming course at MIT,
based on the language Scheme. Operational viewpoint - programs are viewed
as descriptions of computation.

■ [Friedman, D. P. et.al. 1984] A basic text on programming in Scheme. Programs
are viewed as functions. There is much emphasis on the use of various forms
of abstraction (function, control, textual, ...) in programming.

■ [Bürge 1971] Many examples of programming with functions as arguments and
values.

■ [Bürge 1975rec] A basic text on writing recursive programs and using functions
as arguments and values.

■ [Bürge 1975str] Examples of programming with streams illustrating the use of
streams in a variety of applications. Contains a veritable library of operations
on streams.

«[Burstall 1968] Using functional and the Landin J (for jump) operator to pro-
gram search strategies. (See entry for Landin below.)

■ [Conway 1963] Origin of the notion of coroutine as a way of organizing a large
compiler into small independent processes.

■ [Henderson 1980] Treats many aspects of functional programming including use
of higher order functions, abstract machines, implementation issues, and many
excellent programming examples.

§1

. [Kahn and McQueen 1977] A language for defining dynamically configurable net-
works of processes. An important subset of the language can be interpreted
sequentially (as coroutines) or as synchronized parallel processes without af-
fecting the behavior. The paper includes example programs and proofs of
correctness.

1.2.2. Semantics

■ [Barendregt 1981] More than you want to know about the lambda calculus, but
an excellent place to look for definitions, concepts, statements and proofs of
theorems, etc.

-[Felleisen and Friedman 1986,7; Felleisen 1987] Extensions of Plotkin's call-by-
value lambda calculus (see Plotkin entry) with operations for capturing and
aborting the current computation context (control calculus [FELLEISEN AND
FRIEDMAN 1986]) and with labeled values, assignment and dereferencing op-
erations (assignment calculus [FELLEISEN AND FRIEDMAN 1987]). The
calculi are derived from operational semantics given by abstract machines in
the spirit of Landin (see Landin entry). These calculi have Church-Rosser the-
orems, Standardization theorems and can be used as the basis for reasoning
about programs that use function and control abstractions and assignment.

- [Landin 1964-6] An operational semantics for AE (the language of the lambda
calculus) and for IAE (AE plus non-local control and assignment constructs)
given in terms of the SECD machine (an abstract machine for evaluating ex-
pressions.) In Landin[1965], this semantics is used to provide a semantics
for Algol 60 expressions by translation to IAE expressions. In Landin[1966],
Iswim (If you See What I Mean - IAE plus "syntactic sugar" defining ad-
ditional important computation primitives) is proposed as the basis of an
approach to language design. Iswim is a framework providing mechanisms for
naming things (binding) and for defining functional relations, thus reducing
language design to a matter of choosing primitive data and operations and
choosing printed and physical representations.

■ [Plotkin 1975] Defines a call-by-value lambda calculus with constants and shows
that the equational semantics given by lambda-v reduction and lambda-v
equivalence is compatible with the operational semantics (evaluation relation)
given by Landin's SECD machine. The notion of operational (black-box)
equivalence is defined in terms of the evaluation relation and shown to properly
contain lambda-v equivalence.

. [Schmidt 1986] A general text on denotational semantics.

.[Scott 1976] Describes, in great detail, the graph model of the lambda calculus
(discovered independently by Scott and Plotkin). The graph model is an
example of a general method for constructing mathematical models of the

§1 Introduction

lambda calculus. Expressions in the language of the lambda calculus are
interpreted as "graphs" of continuous functions on a domain with a complete
partial order. Equations provable in classical lambda calculus and many more
equations hold in this model. The Y combinator computes the least-fixed-
point operator on graphs of functions. Domain theory is developed within the
model using lamb da-definable retractions to represent domains and the fixed
point operator to solve domain equations.

■ [Scott and Strachey 1971] Original presentation of basic methods of Scott-Strachey
semantics including clearly worked out examples.

§2

2. Programming with function and control abstractions.

In this section we give examples of programs that use function and control
abstractions and multiple values to describe a variety of computation tools includ-
ing program schemes, object behaviors, escape and coroutine mechanisms, and
infinite streams. We begin with an informal summary of notation and concepts
used in the examples. This together with the discussion of the examples is (hope-
fully) sufficient to make the main points clear. The precise syntax and semantics
is given in §4 and many of the properties stated informally here will be stated
more precisely and proved in later sections.

The computation domain contains data and data operations from the under-
lying data structure, pfns, and continuations. Functions computed are "variary"
- their domains and ranges are finite sequences of elements from the computation
domain, o is the empty sequence and [v0,vi] is the concatenation of the sequences
VQ and t^. Elements of the computation domain are treated as singleton sequences.

The underlying data structure for our examples is an S-expression structure.
The domain is closed under pairing and contains integers, strings, and a special
constant Nil representing the empty list. The data operations include (using Lisp
names) pairing and projections (Cons, Car, Cdr); tests for atoms (non-pairs) and
zero (Atom, Zerop); successor, addition, and multiplication (Addl, +, *); and the
string operations (StrMk, StrUn). For S-expressions a and b we write a . b for the
value of Cons(a, 6). Lists are generated as usual from the empty list by pairing. We
write <au ..., an> for ax •(...(• an . Nil)...). StrMk takes a sequence of integers
(character codes) and returns the corresponding string. StrUn takes a string and
returns the corresponding sequence of character codes. #a is the character code
for the letter 'a' and we write "abc" for the value of StrMk[#a,#b,#c].

Pfns are functional abstractions that can be thought of as partial functions
containing information describing how the value of the function is to be computed.
Pfns correspond to Landin's closures [Landin 1964] - the value of a lambda abstrac-
tion is a pfn containing the lambda abstraction and the values of its free variables
m the evaluation environment. Continuations are control abstractions that repre-
sent computation contexts built up in the process of carrying out computations.
A computation context contains the information prescribing how the computation
is to continue when the current subcomputation is complete. As objects of the
computation domain, pfns provide a means of passing procedures as parameters,
of encapsulating an expression for later evaluation, and of constructing special-
ized versions a procedure by instantiating some of its parameters. Continuations
provide a means of remembering and switching contexts, and of suspending and
resuming computations.

§2 Programming with function and control abstractions.

We often use systems of recursion equations to define pfns. These equations
are written using the sign *- and specify that the equation should be used to
replace applications of the defined pfn by the body suitably instantiated.

Extensional properties of programs (properties of programs viewed as black
boxes) are expressed using the operational equivalence relation (=). Two expres-
sions or values are operationally equivalent if they can not be distinguished by any
computational context. This means that an expression or value can be replaced
by an equivalent one in any computational context without changing the mean-
ing of the whole expression. Equivalent expressions either both escape, are both
undefined or are both defined with equivalent values. Operational equivalence is
preserved by substitution and abstraction and it satisfies the usual laws for con-
ditional expressions (if) and the equational laws of the underlying data structure.
The stepwise computation rules can be formulated as laws of operational equiva-
lence. Pfns defined by recursion equations also satisfy the equations obtained by
replacing <— by =. We will see many other interesting properties of operational
equivalence as we proceed. If U is a set of sequences from the computation domain
and u is a member of U we say that u has sort U. We use the term sort rather
than type since the sorts may be organized into many different type structures
and we don't wish to specify a particular one.

One final notational remark. With sequences and lambda abstraction we
have two forms of expressing multi-ary functions and function application: us-
ing sequences as in (A[a, &].<,?) [a, 6] £ <p; and curried lambda application as in
(Xu.Xv.if)(u,v) = ip. In the former a,b range over are singletons and in the latter
u,v range over arbitrary sequences. Note that unary application of a function to
a sequence f[xx,..., xn) and curried application /(x2,..., xn) are different. For
example (\[x,y].ip)[[a,b],c] binds x to a and y to [b,c] while (\(x,y).ip)([a,b],c)
binds x to [a, b] and y to b.

2.1. Multiple values and functionals.

To illustrate the expressive power of multiple arguments and values we define
the string concatenation operation StrConc directly in terms of the data operations
Strlln and StrMk. The trick is to use sequence concatenation to do the main work.

> StrConc[x,y] <- StrMk[StrUn(:r),StrUn(y)]

For example

StrConc["abc","def'*] = "abcdef".

■(Properties of StrConc) StrConc maps pairs of strings to strings, is associative
and has the empty string as left and right identity.

§2

Now we look at an example where higher order functions can be thought of
as program schemes (describing classes of programs). Properties of such func-
tions can serve as proof schemes for proving properties of particular instances.
Sit(/, b,x) iterates a binary function / along a sequence x using b as the initial
second argument.

> Sit(/, b, x) «- if(x, /(fst(x), Sit(/, b, rst(x))), b)

where if tests for the empty sequence and fst, rst compute the first and rest of a
sequence.

■(The sort of Sit) Let A, B be subsets of the computation domain, let / compute
a total function from A x B to B and let b be an element of B. Then Ax.Sit(/, 6, x)
computes a total function from A* (the set of sequences from A) to B.

A sequence of S-expressions is converted to a list by mapping the pairing
function along that sequence beginning with the empty list. Thus we can define
ListMk by

> ListMk(x) *- Sit(Ax,y.Cons[x,y],Nil,a:)

ListMk formalizes the conventional list notation. For example we have

ListMk[0,l,2] = <0 1 2>

ListMk[a0,... ,ak] = <a0 ... ak>

■(The sort of ListMk) From the sort of Sit it is easy to see that ListMk computes
a total function from sequences of S-expressions to lists.

2.2. Object behaviors.

Objects in the Small-talk sense are active entities with internal state that can
receive and reply to some collection of messages. The internal state of an object
can only be changed by the object. This is a form of abstraction (as in abstract
data type) that insures that the representation of internal state in not visible. The
observable behavior of an object is its set of possible message-reply sequences. The
abstraction criteria means that the representation of an objects internal state can
be freely changed without changing the observable behavior of the object.

Although we can not model the sharing aspects for objects whose internal state
may change, we can represent an objects behavior as a pfn which when applied to
a message returns a new pfn describing the behavior of the object after receiving
that message, together with its reply to that message. The behavior represented

§2 Programming with function and control abstractions.

by such a pfn is the set of possible message-reply sequences (ignoring the behavior
pfn part of each reply, which is the functional representation of internal state).

As an example we consider the simplest non-trivial behavior — that of a
(memory) cell. A cells internal state is its contents. A cell with contents a accepts
get and set messages. In the case of a get message, the cell replys with a and re-
mains a cell with contents a. In the case of a set message, with contents component
b the cell becomes a cell with contents b (the reply if any is just acknowledgement).
For simplicity we assume any other messages are no-ops — the internal state is
not changed and no reply is made. We assume there are tests Getmsg and Setmsg
to distinguish message types, and in the case of set messages a selector Contents
that extracts the contents component of the message. The pfn Cell (a) is defined
by

> Cell(a) <- Am.if(Getmsg(m),[Cell(a),a],

if (Setmsg(m), Cell(Contents(m)),

Cell(a)))

■(Specifying cell behavior) The pfn Cell(a) describes the behavior of a cell
with contents a.

2.3. Computing number tree products.

The theme for this set of examples is the problem of computing the product of
numbers in a number tree. A number tree x is either a number, or a pair of number
trees x0 * x\. The tree product is the product of the numbers in a number tree.
The number of cells in a number tree is the number of conses used to construct
it and the number of nodes is the number of cells plus the number of leaves. For
example, 2 and (3 • 2) • 2 are number trees, the tree product of (3 • 2) • 2 is 12,
the number of cells in (3 • 2) • 2 is 2, and the number of nodes in (3 • 2) • 2 is 5.

We will consider three pfns that compute the tree product function. Tp
computes the product by the obvious recursion on the number tree structure.
Tpc and Tps compute the product as one would in a hand computation - by
abandoning the normal processing of a number tree when a zero is encountered and
immediately returning the value zero to the caller. Tpc uses function abstraction
and Tps uses control abstraction to implement the "immediately return zero to
the caller" strategy.

10 §2

2.3.1. Simple recursion on number trees.

Tp is defined by

> Tp(x) - if(Atom(x),x,Tp(Car(x))*Tp(Cdr(x))).

This equation together with laws for operational equivalence and facts about data
operations can be used to compute the value of Tp(x) for any number tree x in
the usual way. As an example we compute the value of Tp((3 . 2) • 0).

Tp((3 • 2) • 0)

=■ if(Atom((3 • 2). 0),(3 . 2). 0,Tp(Car((3 • 2). 0))*Tp(Cdr((3 . 2). 0)))

;; using the definition of Tp

a Tp(Car((3 . 2). 0)) * Tp(Cdr((3 . 2). 0)) ;; Atom((3 . 2). 0) is false

3 Tp(3 . 2) * Tp(Cdr(p . 2). 0)) ;; Car((3 . 2). 0) = 3 . 2

= (3*2)* Tp(Cdr((3 • 2) . 0)) ;; recursively computing Tp(3 • 2) = 3 * 2

3 6 * Tp(Cdr((3 . 2) . 0)) ;;3*2 = 6

=" 6 * Tp(0) ;; Cdr((3 . 2). 0) a 0

= 6*0 ;; computing Tp(0) • 0)) = 0

SS0 ;;6*0£*0

■(Properties of the computation of Tp) In the above computation Car and
Cdr are each applied twice and * is applied twice. More generally, we can show
that for any number tree x in the computation of the value of Tp(x) the number of
applications of Car and Cdr is the number of non-root nodes in x and the number
of applications of * is the number of cells in x.

2.3.2. Improving by pruning unnecessary computation.

If zero occurs in a number tree then the product will be zero. Thus we can
make the following requirement for a pfn computing the tree product:

^ if a zero is encountered in traversing the number tree, terminate
traversal and return zero without further computation.

One way to define a pfn meeting this specification is to define an auxiliary pfn
which has an additional parameter used to store context information. The key is
to insure that as each node of the number tree is visited the initial calling context
and the current number tree context (what remains to be done in processing the
number tree) are both available. Then computation can continue normally or
abort processing and return a value directly to the calling context.

§2 Programming with function and control abstractions. 11

2.3.3. Continuation passing computation of the tree product.

Tpc uses an auxiliary pfn Tc that describes a continuation passing style com-
putation ([Reynolds 1972], [Steele and Sussman 1975]). Tc expects two arguments
- a number tree and a continuation pfn. The continuation pfn represents the cur-
rent number tree context. A key feature of continuation passing style computation
is that no computation context is built up. The current computation context is the
calling context, and simply returning a value from a subcomputation returns it to
the calling context. To continue the computation normally, the value is returned
to the continuation pfn (i.e. the continuation pfn is applied to the returned value).
Tpc and Tc are defined by

> Tpc(x) <— Tc(x,l)

> Tc(x,/) ♦- if(Atom(x),

if(Zerop(x),0,/(x)),

Tc(Car(x),Ta(x,/)))

> Ta(x,/) «- Ay.Tc(Cdr(x),Td(y,/))

> Td(y,/) - \z.f(y*z)

Tpc computes the tree product by calling Tc with the identity pfn, I = Xz.z, as
the initial continuation pfn. For number trees x and continuation functions /,
we can analyze the computation of Tc(x,/) as follows. In the case x is zero,
zero is returned and the computation is complete. In the case x is a non-zero
atom, computation proceeds by applying / to x to carry out the remainder of the
computation. In the case x is a non-atom, the left subtree Car(x) is processed
with continuation Ta(x, /). Ta(x, /) is the pfn constructed by closing the lambda
expression Ay.Tc(Cdr(x),Td(y,/)) in the environment determined by the values
of x and /. If a zero is encountered in Car(x) then zero will be returned as the
value. If no zeros are encountered in Car(x), the value ma of Tp(Car(x)) will be
returned to Ta(x,/). Computation of Ta(x,/)(ma) proceeds by processing the
right subtree Cdr(x) with continuation pfn Td(ma,/). Td(ma,/) is the closure of
Xz.f(y * z) in an environment that assigns the value ma to the symbol y and the
value of / to /. If a zero is encountered in Cdr(x) then zero will be returned as the
value. If no zeros are encountered in Cdr(x), the value raj of Tp(Cdr(x)) will be
returned to Td(mQ,/). Computation of Td(ma, f)(md) proceeds by multiplying
ma and md and returning the result to /. As an example we compute the value
of Tpc((3 • 2) • 0).

Tpc((3 . 2) . 0) £ Tc((3 • 2) • 0,1) ;; definition Tpc

STc(3.2,Ta((3.2).0,l))

12 §2

;; definition Tc, Atom((3 • 2) • 0) is false, Car((3 • 2) • 0) S 3 • 2

= Tc(3,Ta(3.2,Ta((3.2).0,l)))

;; definition Tc, Atom(3 • 2) is false, Car(3 • 2) £ 3

STa(3.2,Ta((3.2).0,l))(3)

;; definition Tc, Atom(3) is true, 2erop(3) is false

S Tc(2, Td(3, Ta((3 • 2). 0,1))) ;; definition Ta, Cdr(3 . 2) K 2

= Td(3,Ta((3.2).0,l))(2)

;; definition Tc, Atom(2) is true, 2erop(2) is false

3 Ta((3 • 2) • 0, l))(6) ;; definition Td, 3 * 2 2 6

= Tc(0, Td(6,1)) ;; definition Ta, Cdr((3 • 2) • 0) a 0

= 0 ;; definition Tc, Atom(0) is true, 2erop(0) is true

■(The functions computed by Tc and Tpc) The function computed by Tc is
characterized by the following equation

(
TCT

P) TcC*, /) S if(lnz(x), 0, /(Tp(*)))

where x ranges over number trees and lnz(s) is true iff zero occurs in x. (Tc.Tp)
can be proved by number tree induction using the informal analysis of Tc given
above. From (Tc.Tp) and properties of the identity pfn it is easy to see that Tpc
computes the tree product function.

(Tpc-Tp) Tpc(x) £ Tp(x)

■(Properties of the computation of Tpc) In the above computation of the
value of Tpc((3 • 2) . 0), Car and Cdr are each applied twice and * is applied
once. More generally, we can show that for any number tree x, in the computation
of the value of Tpc(x) the number of applications of Car and Cdr is number of
nodes before the leftmost zero in the depthfirst traversal of x and the number of
applications of * is the number of cells in x to the left of the leftmost zero.

2.3.4. Pruning by context noting and switching.

The definition of Tps uses context noting to remember the calling context and
context switching to return a value to the calling context. To understand context
noting and switching in general, we can think of a context as an expression with a
hole m it. To evaluate an expression we find the current subexpression and process
that, treating the remainder of the expression as the current context. For example

§2 Programming with function and control abstractions. 13

in Tp(Car(x)) * Tp(Cdr(x)) the current subexpression is Car(x) and the current
context is Tp({...}) * Tp(Cdr(x)). Computation proceeds by replacing Car(x) by
its value say x„. The current subexpression then becomes Tp(xa) and the current
context becomes {.. .}*Tp(Cdr(x)). If the current subexpression is note(c)v? then <p
is evaluated in the current context with c replaced by the continuation representing
that context. If the current subexpression is the application of a continuation to a
value we place the value in the hole of the context represented by the continuation
and evaluate the resulting expression (thus switching contexts and discarding the
previous current context).

Tps notes its calling context and applies the auxiliary pfn Ts to its number
tree argument and the noted context. Ts computes the product in essentially the
same manner that Tp does. Its additional argument is a continuation representing
the calling context. The current computation context is the current number tree
context. If a zero is encountered the context parameter is applied to zero to return
zero directly to the calling context. Tps and Ts are defined by

> Tps(x) <— note(c)Ts(x,c)

> Ts(x,c) <— if(Atom(x),

if(Zerop(x),c(0),x),

Ts(Car(x),c)*Ts(Cdr(x),c))

Three properties of context noting and switching are needed compute the value of
Tps(x):

■ (note.abs) If two expressions <po,tp\ are equivalent when the variable c ranges over
continuations then the their note abstractions with respect to c are equivalent.

• (note.id) If the note variable c does not occur free in an expression <p then
note(c)c(v?) £ tp;

• (escape) If the current subexpression is the application of a continuation then we
can discard the current context - replace the expression being evaluated by
the current subexpression.

As an example we compute the value of Tps((3 • 2) • 0). (note.abs) is used
implicitly - working inside a note expression we may assume the note variable
ranges over continuations and we may replace the note body by an equivalent
expression.

Tps((3 • 2) • 0) £ note(c)Ts((3 • 2) . 0, c) ;; definition Tps

£ note(c)(Ts(3 . 2, c) * Ts(Cdr((3 • 2) • 0), c))

;; definition Ts, Atom((3 • 2) • 0) is false, Car((3 • 2) • 0) S 3 • 2

14 §2

SS note(c)(6 * Ts(Cdr((3 • 2). 0), c))

;; computing Ts(3 • 2, c) 2 6 as for Tp

SS note(c)(6 * c(0)) » computing Ts(Cdr((3 • 2). 0), c) S* c(0)

SS note(c)(c(0)) ;; by (escape)

= 0 ;; by (note.id)

■(The functions computed by Ts and Tps) The function computed by Ts is
characterized by the following equation

(Ts.Tp) Ts(x,c) SS if(lnz(x),c(0),Tp(x))

where x ranges over number trees and c ranges over continuations. From this
equation and properties of noting and switching it follows that Tps computes the
tree product function.

(TPsTp) Tps(x) SS Tp(x)

As an introduction to proving properties of noting and switching we give a proof
of (Tps.Tp). The proof uses a simple equation (Tp.lnz) expressing the fact that
the tree product of a number tree x containing a zero is zero.

(TP-lnz) Tp(x) SS if(lnz(x),0,Tp(x))

We also need a further property of noting (note.if) that allows us to move a note
inside an if when the test does not involve the note variable.

.(note.if) If the note variable c does not occur free in the expression <p0 then
note(c)if(^o,Vi,^2)) = if(vo,note(c)^i,note(c)v?2).

Proof (Tps.Tp):

Tps(x) SS note(c)Ts(x, c) » dfn Tps

SS note(c)if(lnz(x), c(0), Tp(x)) ;; (Ts.Tp)

SS if(lnz(x), note(c)c(0), note(c)Tp(x)) ;; (note.if)

SSif(lnz(x),0,Tp(x)) ;; (note.triv)

= TP(^) ;; (Tp.inz)

°TPs.TP

§2 Programming with function and control abstractions. 15

Notes

• Even though Tps uses context noting and switching in its computations the
expression Tps(x) has a value independent of context.

• Computation of Tps is "isomorphic" to computation of Tpc. That is, there is
an essentially one-one correspondence between steps in the computation of Tpc(x)
and Tps(x). In particular, the number of applications of any data operation is the
same in both cases. The difference is that in the Tps case the interpreter does
the work of keeping track of the computation context while in the Tpc case the
programmer did this work.

• The definitions of Tc and Ts were obtained by applying program transforma-
tions to (Tc.Tp) and (Ts.Tp) viewed as denning equations. The transformations
use standard transformation rules (see [Scherlis 1981]) augmented by rules for
introducing and eliminating abstraction and for manipulating continuation appli-
cation expressions. The transformation steps also constitute a proof that initial
and final equations define the same function.

Endnotes

2.4. Streams as infinite sequences.

The idea of streams was introduced in [Landin 1965] to represent finite se-
quences whose elements are computed as they are needed rather than being com-
puted in advance. This was needed to interpret certain iteration constructs of
Algol 60. More generally, a stream is an object which when queried returns its
first element together with an object computing the rest of the stream together.
Thus we can think of streams as (possibly infinite) sequences whose elements can
only be accessed by removing them from the sequence one at a time. In 1him
streams are represented by pfns and are characterized by the sequences they gen-
erate. (We consider only infinite streams here, thus eliminating the need to deal
with the end-of-stream case.) Note that streams are a special case of object be-
haviors where the only message is the 'next element' message.

As an example, we define the stream Sieve that generates the sequence of prime
numbers in increasing order. The definition is based on the algorithm known as
sieve of Eratosthenes.

> Sieve(mt) +- Sift(lnts(2))

> lnts(n)(mt) ♦- [lnts(n + l),n]

> Filter(p,m)(mt) «- let{[n,m] -e m(mt)}

if(Divp(p, n), Filter(j), m)(mt), [Filter(p, in), n])

> Sift(m)(mt) <- let{[m,p]-em(mt)}[Sift(Filter(p, m)),p]

16 §2

where for numbers p, n the expression Divp(p, n) is true iff p divides n. To see how
Sieve works we compute the first few elements.

(1) Sieve(mt) £ Sift(lnts(2))(mt) £ [Sift(Filter(2, lnts(3))),2]

;; using the definition of Sieve and lnts(2)(mt) Si [lnts(3),2]

(2) Sift(Filter(2,lnts(3)))(mt) 2* [Sift(Filter(3,Filter(2, lnts(4)))),3]

;; since Filter(2, lnts(3))(mt) £ [Filter(2,lnts(4)),3]

(3) Sift(Filter(3, Filter(2, lnts(4))))(mt) S [Sift(Filter(5, Filter(3, Filter(2, lnts(6))))), 5]

;; using Filter(2, lnts(4))(mt) Si [Filter(2,lnts(6)),5] and
;; Filter(3, Filter(2, ints(4)))(mt) £* [Filter(3,Filter(2,lnts(5))),5]

■(Properties of the sieving pfns) Let n,p be numbers and in be a stream
generating a sequence of numbers. Then

■ (i) lnts(n) generates the the sequence of numbers greater than n.

-(ii) Filter(p,m) is a stream generating the sequence obtained by removing all
multiples of p from the sequence generated by in.

-(iii) Sift(m) is a stream whose first element p is the first element of in and whose
remainder is the stream obtained by filtering p from in and sifting the result.

From this and a little number theory we see that Sieve is indeed a stream
generating the sequence of prime numbers in increasing order as claimed.

Note. The Sieve example is derived from a description in terms of networks
of processes [Kahn, G. and D. B. MacQueen 1977] which can be interpreted as
coroutines or as parallel processes. It can also be represented in 1him as a coroutine
that is, in a strong sense, equivalent to the stream version. Another good source of
stream examples is [Abelson and Sussman 1985 (3.4)]. Here streams are thought
of as lazy lists and represented as pairs whose first element is the next element of
the stream and whose second element is function generating the remainder of the
stream. Endnote.

2.5. Using coroutines to transform sequences.

A system of coroutines is a set of programs that interact by resuming one
another rather than by the usual function call/return mechanism. A given corou-
tine when resumed will continue computation where it last left off, carry out the
next portion of its computation, and then resume some other coroutine. Typically
information is passed between coroutines by updating shared data structures and
each coroutine has internal state that keeps track of where to begin when it is

§2 Programming with function and control abstractions. 17

resumed. The idea was originally presented in [Conway 1963] as a means of sepa-
rating a large compiling program into a number of small independent procedures.
Each procedure is a coroutine responsible for some phase in the transformation
of a source program into the compiled code. Another common use of coroutines
is for dealing with streams of characters in networks. As a particular example,
we adapt a segment of network code from the Stanford WAITS operating system
that uses coroutining (J. Weening - private communication). This code deals with
a situation where one gets data in a stream of 36-bit words, but would like to
see it as 8-bit bytes. There is a coroutine INBYTE responsible for getting the
next byte from the 36-bit word stream. Another coroutine which uses the 8-bit
bytes, for example to generate a 32-bit word stream, resumes INBYTE each time
another byte is needed. INBYTE has nine segments of code, one for each of the
nine bytes contained in two consecutive 36-bit words. To illustrate the main fea-
tures we outline the machine code (based on the DEC10 language FAIL) for a
simplified version C32 that transforms 3-bit streams into 2-bit streams. Here IN
is the coroutine generating the 3-bit stream and OUT is the coroutine requiring a
2-bit stream. We assume 4 registers reserved as follows:

A for control communication between C32 and IN

B for control communication between C32 and OUT

C for data communication between C32 and IN

D for data communication between C32 and OUT

The instruction JSP A, (A) jumps to the location contained in A and replaces the
contents of A by the location plus 1. JRST loc jumps to loc. Initially A contains
the address of IN and B contains the address of C32. OUT resumes C32 by JSP
B,(B). The code for C32 is

C32: JSP A, (A)
C32a: move bits C0-C1 into D0-D1

JSP B,(B)
C32b: move bit C2 into DO

JSP A,(A)
C32c: move bit CO into Dl

JSP B,(B)
C32d: move bits C1-C2 into D0-D1

JSP B,(B)
JRST C32

In Ihrni we represent coroutine interaction without using internal state and updat-
ing by passing shared data and resumption points as parameters. Resumption is
described by the pfn Resume[oui,:r] which resumes the context represented by out
passing it a continuation representing the context in which the call occurs and the

IS §2

additional parameters x. [x may be the empty sequence and hence may be omitted
in calls to Resume.] To describe coroutine C32 we define a pfn C32 that takes a
coroutine in generating a sequence of bits segmented as strings of length three and
returns a coroutine generating the same sequence of bits segmented as strings of
length two. Thus C32(m) takes a continuation out representing the resumption
point of its resumer and will eventually resume out with the next output string.
Dually, when C32(in) wants the next input string it will resume in and eventually
be resumed with the next resumption point of in and the next input string.

> C32(in)[out] <- let{[m,u>]-«-Resume[z'n]}

let{[x0,xi, x2] -«-Strlln(tü)}

\et{out -«- Resume[oui, StrMk[x0, xi]]}

let {[in, w] -«- Resume[m]}

let{[x3,x4,x5] -*-Strtln(u?)}

\et{out -<- Resume[out, StrMk[x2, x3)]}

kt{out ■«- Resume[ou<, StrMk[x4,x5]]}

C32(in, out)

To evaluate an expression of the form let{[x0,... ,x„] -e ^argl^body first v?arg is
evaluated, then then Xj is associated with the z'-th element of the value of y?arg and
Vbody is evaluated. Thus

let{[x0,xi,X2]-eStrUn("abc,,)}StrMk[xo,ari] = "ab"

If we think of let as assignment then the above definition looks like code written
in a standard imperative language.

In order to conveniently discuss properties of C32 we add "labels" naming
the resumption points of C32. More precisely we define auxiliary pfns C32a, C32b,
C32c, and C32d corresponding to the remainder of the computation at each re-
sumption point. These pfns have the following properties

C32(m)[ou<] 3 C32a(ou<)(Resume(m))

C32a(oMt)[m,u;] 3S \et{[x0,x1,x2] -e StrUn(uj)}

C32b(m, x2)(Resume[out, StrMk[x0, xi]])

C32b(m,x2)[ou<] £ C32c(out,x2)(Resume(m))

C32c(out,x2)[m,u;] 2 let{[x3,x4,x5] -«-StrUn(»}

C32d(m, x4, x5)(Resume[oui, StrMk[x2, x3]])

C32d(m,x4,s5)[ou<] = C32(zn)(Resume[oui,StrMk[x4,x5]])

§2 Programming with function and control abstractions. 19

In each case the first list of parameters (...) lists the state to be retained and the
second list [...] names the components of the argument passed to the coroutine
upon resumption.

The key to computing with coroutines is to note that resumptions come in
pairs - the first executed by the resumer and the second by the resumee. When a
coroutine g generating a sequence a is resumed it will eventually resume its resumer
with the next element of a in a context representing the next resumption point of
g. Thus Resume^) will be equivalent to Resume(A&.0'(Resume[Jfe,z])) where z is
next element of a and g' is the coroutine generating the rest of the sequence. For
this use of resumption the key property of Resume is given by resumption theorem
(res.res). *

(res.res) Resume(AÄ\sr'(Resume[ifc, z])) £ [top o g', z)

and thus for g as above we have

(co) Resume^) £ [top o g\ z).

These properties of coroutines and resumption are all we will use.

To see how this works in our string transformation example, let in be a corou-
tine generating strings of length three whose first two elements are "abc" and
"def" and whose remainder coroutines are in\ and iri2. Then

(Inl) Resume(m) = [top o z'm, "abc"]

(In2) Resume(mi) = [top o m2, "def"]

We can compute the results of three successive resumptions of C32(in) as follows.

(Res.l) Resume(C32(m)) 2 Resume(Afc.C32(m, k))

£ Resume(Afc.C32a(fc)(Resume(m))) ;; dfn C32

= Resume(Afc.C32a(fc)[topomi,"abc"]) ;; (Inl)

= Resume(Afc.C32b(topoini,#c)}(Resume[fc,"ab"])) ;; dfn C32a

= [top o C32b(top o tni, #c), "ab"]

;; (res.res)

(Res.2a) C32b(top o im,#c)(fc) £ C32c(fc,#c)(Resume(top o im)) ;; dfn C32b

top o p converts a pfn p into a pfn that discards its context and applies p. This
corresponds to to the application of p at the top level.

.u §2

S C32c(fc,#c)[top o m2, "def"] ;; (In2)

S C32d(topoi92,#e,#f)(Resume[ifc,"cd"]) ;; dfn C32c

(Res.2) Resume(C32b(topomi,#c)) S [top o C32d(top o m2,#e,#f), "cd"]

;; (Res.2a) and (res.res)

(Res.3a) C32d(top o m2, #e,#f)(fc) £ C32(top o m2)(Resume[Jfc, "ef"])

;; dfn C32d

(Res.3) Resume(C32d(top o m2, #e, #f)) £ [top o C32(top o m2), »ef"]

;; (Res.3a) and (res.res)

Note. Streams and coroutines are alternatives for providing sequential access to
data. Both provide the capability to delay computation of the next element of the
sequence until it is needed. Both allow the representation of infinite sequences.
They differ in the mechanism for accessing the elements of sequences (apply vs re-
sume) and in the mechanism for remembering the internal state (noting vs lambda
abstraction). Using the Thim representations of streams and coroutines one can de-
fine pfns that convert streams to coroutines and coroutines to streams, preserving
the sequences generated. Endnote.

§3 The meta world. 21

3. The meta world.

Now we review the mathematical structures and tools to be used in the defini-
tion and application of Ihirn. They are finite sequences, finite maps and inductive
generation of domains, operations, and relations. The point is to establish nota-
tion as we assume that the reader is familiar with these notions. First some basic
notation. N is the set of natural numbers, 0,1,... and i,j, k, /, m, n will range over
N. For expressions eo and ei, eo(ei) is the application of the function expressed
by e0 to ei. For sets A and B, A x B is the cartesian product of A and B with
elements (a, b) for a € A and b € B, and we write A © B for the union of A and
B when A and B are disjoint. Similarly for n-ary products (whose elements are
n-tuples) and sums. [A —► B) is the set of functions from A to B and [A -^ B)
is the set of partial functions from A to B. In the presence of partial functions,
eo = t\ (eo T^ ei) means that both expressions eo and e\ are defined and have the
same value (distinct values).

As to general format, definitions are marked by the sign > which may be
followed by a name for later reference. We use Dnarae to mark the end of a proof
named (name).

3.1. Finite Sequences.

For any set A, A* is the domain of sequences from A. a is the empty sequence
and has length 0. If VQ and ui are sequences then [uo, t>i] is the concatenation of VQ

and vi. Its length is the sum of the lengths of vo and V\. The length of a sequence
v is denoted by |u|. Formally there is an injection map from A to the sequences of
length one in A*. Informally we will not distinguish elements of A from singleton
sequences. If a is an element of A and v is a sequence then [a, v] is a non-empty
sequence; 1st [a, v] is a, the first element; and rst [a, v] is u, the remainder. 1st a is o
and r^o is a. For i < \v\, v[i is the ith element of v. In particular, u|0 = 1st v and
t>ii+i = (rstu)li- Concatenation is associative with the empty sequence as right
and left identity. We write [vi, ... , vn] for the concatenation of the sequences
vi, ... , vn. a is a member of v (written a € v) iff v is [VQ, a, vi] for some sequences
v0, Vi.

We distinguish Ax A from the subset of A* consisting of sequences length 2.
This is because we wish to talk conveniently about multi-ary operations whose ar-
gument domains may be sequence domains. Thus (vx,..., un) (as in f{v\,..., vn))
is an n-tuple of sequences and is not the same as [v\,..., vn). From the tuple each
Vi can be retrieved intact while in the concatenation expression they become part
of a single sequence.

22 §3

3.2. Finite Maps.

Finite maps are functions with finite domains. We represent such maps as
finite sets of argument value pairs called bindings. For sets A and B, [A -U B] is
the set of finite maps from A to B. It is generated from the empty map { } by the
binding operation. The domain of the empty map is the empty set 0 (also written
{ }). For a € A, b € B, and f a finite map from A to B, ({a + b} is the map
obtained from f by binding b to a. The domain of f{a-e b} is obtained from the
domain of f by adding a. For a' in the domain of f {a -t- b} we have

£{a + &}(a') = {j(a/:
if a' = a

') ifa'^a.

Two finite maps are equal just when they are equal as functions. Different con-
structions may give rise to the same functions since the order in which bindings of
different elements of the domain are added does not matter and old bindings are
forgotten.

3.3. Inductive generation.

Finite inductive generation is our main tool for defining domains, operations
and relations. An inductively generated domain is defined by giving rules for con-
structing elements of the domains and rules for determining equality. The domains
contain only the elements obtained by finitely many constructions. Elements gen-
erated by different constructions are different unless they can be proved equal
using the rules for equality. Abstractly these domains are essentially initial alge-
bras where the signature of the algebra can be read from the construction rules.
For such domains we have principles for definition and proof by induction on the
generation of objects in the domain. For example the domain of finite maps from
A to B is an inductively generated domain. There are two constructors, the empty
map and the binding operation, equality of maps is equality of the corresponding
functions, and the application laws for finite maps and the definition of the domain
of a finite map are defined by finite map induction.

Operations and relations may also be defined by inductive generation. For
this purpose we think of operations as just a special kind of relation. Relations
are defined by giving a set of rules for determining whether a given tuple is in the
relation. Formally the defined relation is the least relation (set of tuples) satisfying
the closure conditions expressed by the rules. The rules are often presented as
logical implications. For inductively defined relations there are also corresponding
principles of proof by induction.

We refer the reader to Feferman [1982] for a theory of finite inductive def-
initions, to Goguen and Meseguer [1983] for more about initial algebras, and to
Moschovakis [1975] or Aczel [1977] for a general theory of inductive definitions

§3 The meta world. 23

3.4. The S-expression data structure.

Computation in Ihim is defined relative to a fixed but arbitrary data struc-
ture ID. We assume only that S is a structure (D,O

D
) where D is the domain

of data elements and O
D
 is a set of data operations mapping D* to D*. The S-

expression data structure 2)sexP = (Dsexp, QDsexp) is typical of the data structures
we have in mind. It contains a variety of data construction primitives and pro-
vides an abstraction of the algebraic aspects of data structures commonly used in
symbolic computation. The S-expression domains and operations are summarized
in Figure 1.

Sort Constructor Constructor Recog- Uncon-
Domain nizer structor

Dzero ZeroMk Mt Zerop

Dneg Subl Dneg 0 Dzero Negp Addl

Dpos Addl Dpos 0 Dzero Posp Subl

Dstr StrMk Out Strp StrUn

Dmtl MtlMk Mt Mtlp

**pair PairMk D8exp x D8exp Pairp PairUn

Figure 1. The S-expression data structure

The elements of the S-expression domain 'sexp are of four sorts: Dmti, D int i

Dstr, and D pair- Dmti contains a single object, the empty list; the elements of Djnt

are the integers; the elements of Dstr are strings of integers; and Dpair consists of
pairs of S-expressions. To describe the generation of Dsexp, we split Djnt into three
sorts: Dneg - the negative integers; Dzero - the integer 0; and Dpos - the positive
integers.

The primitive S-expression operations 0D
seXp are constructors, unconstruc-

tors, and recognizers for each of the sorts. Dsexp is freely generated by the con-
struction operations applied to their construction domains. Dzero is generated by
ZeroMk applied to the empty sequence; Dneg is generated by Subl applied to non-
positive integers; and Dpos is generated by Addl applied to non-negative integers.
Dmti is generated by MtlMk applied to the empty sequence; Dstr is generated by
StrMk applied to sequences of integers; and Dpair is generated by PairMk applied
to S-expression sequences of length 2.

04
§3

An unconstmctor applied to an element of the corresponding sort returns the
sequence from which that element was constructed. PairUn is the unconstructor
for pairs and StrUn is the unconstructor for strings. Addl serves as the uncon-
structor for negative integers, and Subl as the unconstructor for positive integers.
[Unconstructors for singleton domains are omitted.]

A recognizer applied to an element of the sort that it recognizes returns that
element. The recognizer for Dneg is Negp; for D2ero is Zerop; for Dpo9 is Posp; for
Dstr is Strp; for Dmtl is Mtlp; and for Dpair is Pairp.

A constructor applied to a sequence not in its construction domain and an
unconstructor or recognizer applied to anything other than a data element of the
corresponding sort return the empty sequence.

These basic operations are sufficient to define any computable function on the
S-expression domain. For simplicity we will assume some additional operations are
given. These include standard arithmetic operations such as + and *, standard
projection operations on pairs Car and Cdr, and Atom the negation of Pairp. To
conform to traditional Lisp notation we will use Cons as another name for PairMk
and will also use Nil to denote the empty list.

We will use the usual notation for integers and pairs strings and lists Thus
ZeroMk(o) = 0, Addl(O) = 1, Subl(O) = -1, and PairMk[a,6] = a . b. #a, #b,
..., denote integer codes for the characters 'a', 'b', etc. and StrMk[#a, #b, #'c] =
"abc". Lists are the subset of S-expressions generated from the empty list' <> by
pairing arbitrary S-expressions with lists. Thus MtlMk(a) = <> and <ax ... an>
abbreviates cti . (... (an •<>)...) as usual.

The following equations illustrate the laws for data operations:

Pairp(a0 • aj) = a0 • ax PairUn(a0 • ax) = [ao,ai]

Pairp("abc") = o PairUn("abc") = o

Mtlp(<a>) = n Mtlp(<>) = <>

Addl(Subl(0)) = 0 Addl(ü)=D

StrUn("abc") = [#a,#b,#c]

§4 The 7vum world. 25

4. The Hum world.

Thirn is a theory of computation developed with the goal of treating both
intensions! and extensional aspects of programs that use functional and control
abstractions. Many of the ideas have analogs in [Landin 1964,5,6], [Reynolds
1972], [Wegner 1971,2], and [Steele and Sussman 1975]. In this section we define
the basic domains, operations, and relations and introduce some further notation.
More detailed developments of the computation theory and proofs of theorems can
be found in Talcott[1985].

We assume that a set of symbols §y, a data domain D, and set of data op-
erations 0D acting on sequences from D are given. The S-expression structure
described in §3 is an example of a data domain and set of data operations.

4.1. Domains of Ihim.

Figure 2 lists the domains (sorts of objects) of Ihrnn together with metavari-
ables ranging over these domains.

Name Notation Description
Data D domain of the given data structure

dec* sequences form the data domain

Data operations oe oD
operations of the given data structure

Symbols s € Sv for naming values

Forms v?e F expressions describing computations

Continuation forms Fes C F for making continuation segments

Environments £€E finite maps from symbols to values

Dtrees 8 € D< description trees

Pfns p€ P descriptions of partial functions

Continuations 7 € Co descriptions of computation contexts

Operations ■Q <E 0 data operations, pfns, continuations

Computation Domain a € V data and operations

Values u,v e v* sequences from computation domain

States C € & states of sequential computations

Figure 2. "Rum Domains

26
§4

As discussed in §3 the Thim domains are essentially many-sorted initial al-
gebras. They are presented by the defining equations given in Figure 3. The
summands in the equations indicate the name and arity of the domain element
constructors. A constructor applied to a tuple of domains denotes the set of ob-
jects obtained by applying the constructor to all tuples of objects in the tuple
of domains. For example A is a form constructor with two arguments, a symbol
and a form and A(S», F) is the set of forms A(a, <p) for s a symbol and y> a form.
The defined domains are the least sets satisfying these equations. Elements with
different constructions are distinct unless they can be proved equal by the equality
rules to be explained below.

F ~ Sy © A(Sv, F) © app(F, F) © If(F, F, F) © mt © cart(F, F) © fst(F) © rst(F)

©top © note(S», F)

Fe. ~ ifi(F, F) © appi(F) © appc(Sy) © carti(F) © cartc(Sy) © fstc © rstc

D« ~ {(¥> : £)\lbees((p) C Dom{£)}

P ~ {{\(8,<p) : 0\Frees{\{s,<p)) C Dom(Z)}

Co ~ top © {Co o (<p : () \Frees(<p) C Dom(Z) A if € Fc,}

& ~ (Co v Df)©(Co A V*)

O ~ OD © P © Co V~D©0 E~[§s/-^V*]

where

if i(Vl, <p2) = A(a., if (s. ,(pi,(p2))

appi(¥j1) = A(a.,app(a.,v»a))

appc(s) = A(s.,app(5)5<))

cartl(v>1) = A(*.,cait(«.,y,1))

cartc(a) = A(*.,cart(*,«,))

fstc = A(3.,fst(*.))

rstc = A(a.,rst(*.))

with 5. chosen so as to occur only where explicitly shown.

Figure 3. Domain equations

§4 The "Rum world. 27

About Forms. Expressions called forms axe the syntactic objects - our pro-
gramming language. Forms are generated from the set Sy of symbols and the
constants mt and top (for naming the empty sequence and the empty context
respectively)1 by the constructions app (application), A (function abstraction),
note (control abstraction), if (conditional), cart (sequence concatenation), and fst
and rst (sequence selection), note is the Ibim analog of Landin's J operator, and
the catch construct of Scheme [Steele and Sussman 1975] (known as call/cc in
modern versions of Scheme [Rees and Clinger 1986]). It binds the continuation
representing the current computation context to the noted symbol. For conditional
branching, the empty sequence represents false and any non-empty sequence rep-
resents true. A and note are binding constructs. Bound and free occurrences of
symbols in forms are defined as usual and Frees(<p) is the set of symbols occur-
ring free in (p. Two forms are equal if they have the same construction modulo
renaming of bound variables (a-conversion). <p{s/<Po} is the result of replacing
free occurrences of s in <p by ipo (with renaming of bound symbols in <p if nec-
essary to avoid trapping of free symbols in tp0). We will use c, /, g, h, x, y, z and
other identifiers not otherwise reserved to denote particular symbols when writing
particular forms. Distinct identifiers are assumed to denote distinct symbols. We
use traditional notation for application and abstraction. Thus we generally write
Xx.f(x) for A(/,app(/,x)). Other convenient abbreviations and notation will be
given later.

About Dtrees. To describe a particular computation, a form is closed in an
environment that assigns a sequence of elements from the computation domain to
the free symbols. This closure is called a dtree (for description tree) to emphasize
the relation between the tree structure of a form and the local structure of the
computation described by the form. Two dtrees are equal just when they differ
by renaming of environment bound symbols (i); by renaming of A- or note- bound
symbols (ii); or by modifying bindings of symbols not free in the form (iii).

(i) (cart(x, x) : 0 = <cart(x, y) : £> ;; if £(*) = £(y)

(ii) (Ax.note(c)/(cart(c,x)) : 0 = (Ay.note(fc)/(cart(fc,y)) : £)

(iii) (x :£) = (x:£{y + v})

Note that by our convention in (iii) x and y are distinct symbols.

About values. The computation domain contains data, data operations, pfns,
and continuations.

We use top to denote both the form and the corresponding continuation. Context will
determine the meaning in cases where the distinction is important.

28
§4

Structurally pfns are just A-dtrees and two pfns are equal just when the cor-
responding dtrees are equal. Computationally pfns are functional abstractions
analogous to Landin's closures. The computation described by application of a
pfn to a value is that described by the dtree whose form is the body of the lambda
form and whose environment is the result of binding the value to the lambda
variable in the pfn environment.

Continuations represent computation contexts built up in the process of car-
rying out computations. Structurally they are sequences of dtrees whose form
components are continuation segment forms. Two continuation segments are equal
just when the corresponding dtrees are equal and two continuations are equal just
when they the same length and corresponding segments are equal. Computation-
ally continuations are control abstractions. Applying a continuation to a value
means resuming computation in the context represented by the continuation, re-
turning the value and discarding the current context.

The only further rules of equality are the equality rules for finite maps and
finite sequences explained in §3.

4.2. Operations and relations.

Figure 4 summarizes the operations and relations on Thim domains defined
below. The sign for each operation or relation is given together with its arity.

Name

Single Step
Step

C-seq formation

Evaluation
Reduces-to
Definedness

Notation and arity

: € [& "^ &]
C [& X &]

Ca € [D« -^ &']

«-► € [Dt -^ V]
>y C [Bt x Dt]
UCOt

Figure 4. Relations and operations of Hum

§4 The Ihim world. 29

4.2.1. Computation rules.

Computation is modeled as a process of generating sequences of structures
called computation states. This is similar to the approach of Wegner. Computation
states together with the single step (next state) relation constitute an abstract
machine analogous to the SECD machine of Landin. The Ihim abstract machine
is very similar to the abstract machine implicit in the first-order continuation
passing interpreter of Reynolds and to the abstract machine from which Felleisen
and Friedman derive their control calculus.

Computation states come in two flavors begin states 7 v 8 constructed from
a continuation 7 and a dtree 8 and return states 7 A u constructed from a con-
tinuation 7 and a value v. The continuation component of a state represents the
current context. The dtree component of a begin state represents the current
expression - the subcomputation to begin next. A return state corresponds to
returning the value component to the current context. Continuations are compo-
sitions of segments corresponding to steps in building up the context represented.
The continuation top represents the empty context (top level). If 7 represents
the context for (<po(<pi) '• £)> ^he application of ipo to </?i in environment f, then
7 o (appi((,£?i) : £) represents the context for the evaluation of the function part
{<po ' 0- If (^0 • 0 returns value v then 7 o appc(u) represents the context for
evaluation of the argument part ((pi : f). If 7 represents the context for the eval-
uation of (if(cJc0,<,£?!,yj2) : £) then 7 o (ifi(<^i, V2) ' 0 represents the context for the
evaluation of the test part (<po : f). Similarly for cart (segment constructors carti,
carte) fst (segment constructor fstc), and rst (segment constructor rstc). Note that
we use some abbreviations in writing continuation segments. For example appc(u)
abbreviates (appc(x) : x-<-u) since the choice of symbol is irrelevant, and fstc
abbreviates (fstc : £) since the environment is irrelevant.

Computation proceeds by applying the step rules to obtain a sequence of
states called a computation sequence. The form and continuation segment con-
structors correspond to abstract machine instructions. For begin states 7 v 8 the
rule to be applied is determined by the construction of the form component of 8. If
8 is primitive its value is returned to 7. Otherwise a subexpression of 8 is selected,
a continuation segment is added to the continuation recording the information
needed to continue when the value of the selected subexpression is returned, and
computation described by the subexpression is begun. A return state top A V is
terminal. For return states (7 0 ip) A V the rule to be applied is determined by
the component of the top segment ip. If this corresponds to a basic computation
primitive (ifi, appc, carte, fstc, rstc) it is executed. Otherwise the next .subexpres-
sion to process is chosen and the top segment is replaced by a new segment that
remembers the returned value and any additional information needed.

30
§4

■, is the least relation on states satisfying the following:

(sym) 7*.<*:0 >-►. 7*£(s)
(lam) 7 * (\(s,<phody) : £) y», 7 A (A(s,Vbody) : f>

(app) 7 v (app(^UB,Varg) : f) >^, 7o (appi(^rg) : £) * (Vfuil : f)

(appi) 7 o (appi(v?arg) : f> A v/ttn Wi (7 0 appc(t»/.n)) v (Varg s £)
(o) 7oappc(o) A <f >_►, 7^ 0(<f)

(appc) 7 O apPC((A(5, y,) : 0) * t>„r, >—. 7 * (<? : £{* + W>
(sw) 7 o appc(7o) A Varfl ^4 7o A Vapff

(if) 7 v <if(vw,?th«,V>eb«) :{)^l7o (lfl(y»then,V»dM) : 0 v (^ : f)

(ifi) 7 o (!fl(v»the., Vei.e) : 0 * V«e„ K^I ^then : $ if üte" * D

I (Velee : £) if Vte,t = D
(mt) 7 v mt >—►, 7 A a

(cart) 7 v (cart(Wh.,v»,h.) : 0 w, 70 <carti(y>rh8) : 0 v (Wh. : £)

(carti) 7 o (carti(v?rh8) : f) A v,ht >-♦, 7 0 cartc(t;rfc,) v (^ : f)

(carte) 7 o cartc(m#) A Vrhs KTA [v,h.,vrh.]
(fSt) 7 v (fst(¥)Beq) : £) ^4 7 o fstC v (^ : £)
(fstc) 7 o fstc A v,e? ^ 7 A !»t ^v>e^

(rst) 7 v {rst^.«,,) :{)KT ° rstc v (^ : £)
(rstc) 7 o rstc A „,e, ^, 7 A r

st (v$eq)
(top) 7 v top >—♦, 7 A top

(note) 7 v <note(*V : 0 w, 7 * (y, : £{a + 7}>

is the transitive reflexive closure of >—+,.

Figure 5. Rules for stepping

4.2.2. Computation sequences.

> (Steps): The single-step relation (>->t) and the step relation (W) are defined
m Figure 5. A step is a pair of states (Co,Ci) such that Co >-►, Ci-2

It is easy to see from the definition that the single-step relation is a functional
relation. This is expressed by the unicity lemma.

Lemma (single-step is functional): C >->t £0 A C >-», Ci =* Co = Ci-

2 One might also include the rule applied as part of a step. In Hum the rule is uniquely
determined by the first state.

§4 The "Rum world. 31

7 v <if(Zerop(x),c(x),x) : f)

>-+ 7 o (ifi(c(x),x) : f) v (Zerop(x) : £) (")
H70 (ifi(c(x),x) : £) 0 (app'l(x) : £) v {Zerop 0 (app)

H7° (ifiCcCx),!) : 0 0 (appi(x) : £) A Zerop (sym)

H70 (ifi(c(x),x) : f) 0 appc(Zerop) v (x : £) (appi)

H70 (ifi(c(x),x) : f) 0 appc(Zerop) A 0 (sym)

y-+ 7o(ifi(c(x),x) : f) Afj (Zerop)

H7' <c(x) : 0 (ifi)

}-+ 7o(appi(x) :f) v (c :f) (app)

H70 (appi(x) : 0 A top (sym)

W70 appc(top) v (x : f) (appi)

H70 appc(top) A 0 (sym)

y-+ top A 0 (sw)

where £ maps x to 0, c to top, and

maps the symbol Zerop to the S-expression operation Zerop.

Figure 6. Example computation sequence

> (Computation sequences.): A non-empty (possibly infinite) sequence of
states E is a computation sequence if each adjacent pair of states is a single step -

(Vi < IS I — l)(S|i >—-*t EJ.j+1). We write £a y—* C,z if E is a finite computation
sequence of length n + 1 such that Ejo = Ca and E|„ = (x- Cs(Q is the longest
computation sequence with first element £. By the functionality of single step there
is a unique (possibly infinite) such sequence. Cs(8), the computation sequence for
the dtree <5, is defined as Cs(top v 8).

To illustrate the structure and properties of computation we carry out in
detail the computation described by the form if(Zerop(x),c(x),x) closed in an
environment £ mapping x to 0 and c to top. The computation is carried out in
an arbitrary context 7. The resulting computation sequence, Eex, is shown in
Figure 6. The rule applied for each step is given in the column at the right.

32 §4

4.3. Abbreviations and notation.

We close this section with some syntactic sugar. We use two kinds of def-
initions -syntactic abbreviations (macros) and definitions of "constants". The
sign := is used for syntactic abbreviations (macro expansion) and the sign «-
is used for constant definitions. Defining a constant has the effect of restricting
environments to map the constant symbol to its value.

> (application macros): Multi-ary application and abstraction can be ex-
pressed by currying or by using sequences and let abbreviates lambda application
as usual.

Asi, ••• ,sn.<p := \(Sl, ... \(sn,<p)...),

Po(v>i, ... ,¥>„) := app(... app(y>0,¥>i), ... <^n),

[fu ••• ,v»n] := cartel,cart(... ,pn)),

Ah,52, ... ,sn)<p := A5l.((ASl.A[32, ... ^„^(fst^^rst^!))), and

\et{b + p}yhody := (\b.<phody)(p).

where b is a symbol or a sequence of symbols.

We define the constants I (the identity pfn), B (the composition pfn), and Rec
(the recursion pfn) as follows.

> I <— Xx.x

> B - \f,g,x.f(g(x))

> Rec <_ \g.\et{h + \h.\x.g(h(h),x)}h(h)

We often use infix notation for "binary" pfns. For example p0oPl is the composition
B(Po,Pi)

Recursive definitions are represented using the recursion pfn. A recursion
equation of the form

/(&i,...,6n) <- <p

where &,- is a symbol or a sequence of symbols, is an abbreviation of

/ «- Rec(\f.\bu...,bn.<p).

For example

> Bot «- Ax.Bot(x)

§4 The TZurn world. 33

defines Bot to be Rec(A/.Ax./(i)) (= Rec(ABot.Ax.Bot(:r))). Thus Bot is the
totally undefined (bottom) pfn.3

> (boolean macros): The boolean operations and, or, and not are defined using
if following the Lisp tradition. Here T is any expression with non-empty value -
for example I.

or(^ih9,v?rhs) := if(vih8,T,if(^rh»,T,mt))

and(^ihs,^rh8) := if(v?ih8,if(Vrhs,T,mt),mt)

not(y>) := i%,mt,T)

4.4. Operational relations

We call properties of pfhs that depend only on their "black box" behavior ex-
tensional properties. Such properties do not depend on the computation described
but only on the results of application. Many of the properties we wish to prove
about programs are extensional properties. For example

■ Tpc, and Tps compute the same function as Tp.

■ C32 converts a sequence of characters segmented as strings of length three
into the same sequence of characters segmented as strings of length two.

■ Sieve generates the sequence of all prime numbers in increasing order

The operational approximation and equivalence relations on dtrees and values
formalize the notion of "same black box behavior". The basic idea is that two ob-
jects are equivalent if they can not be distinguished by any computational context
(continuation). Operational equivalence in /Rjim is defined in terms of the abstract
•machine described in §4. It is an adaptation of [Plotkin 1975], which is in turn
an adaptation of the notion of extensional equivalence [Morris 1968]. Operational
approximation and equivalence are preserved by substitution and abstraction and
thus provide a good basis for equational reasoning. For most pfhs, the intended
domain of application is some siibset U of V* and we are really interested in prov-
ing statements of the form "for u ranging over U ... u ... ". For this reason, we
also define the operational membership relation on dtrees and subsets of values.
Operational membership in some set of values expresses the fact that a dtree can
be treated as if it were a value in that set.4

We consider the case of a pfn defined by a single equation. The multiple recursion case
is similar, just messier.

The traditional formulation of operational equivalence (cf. [Plotkin 1975]) is between
forms (expressions) rather than dtrees (closures). In the appendix we show that are
formulation when extended to forms is equivalent to the standard formulation.

34 54

We begin by defining the trivial approximation relation C0 on values which
relates values of the same length whose corresponding elements are either equal
data elements or both operations (but not necessarily equal). This is our version
of indistinguishable. Two states are trivially approximate if the first steps to a
value implies that both step to related values.

> (Trivial approximation):

uoCoü! = |Uo| = \Vl\ A(VZ< lv0l)(t;oii€D VvU.-eD =► voii = t>ii.)

Co Qo Ci = (VuoXCo >-+ top A Vo =-> (3ui)(u0 Eo U! A d M top A Vl))

Operational approximation C is defined in terms of trivial approximation by saying
that two dtrees or values are operationally approximate just if for any continua-
tion the corresponding states are trivially approximate. Operational equivalence
(=) is the intersection of operational approximation with its inverse. Operational
membership € in a set of values means operational equivalence to a value in that
set.

> (Operational relations):

£o E <$i = (V7X7 v 60 C0 7 v Si)

voQv! = (V7X7 A v0 C0 7 * ui)

X° ~ Xl ft Xo ~ Xl A Xl - x°y »' * a dtree or value

u €U = (3u € U)(v ^ u) ;; C/ a subset of V

The operational relations are extended to relate dtrees and values by defining
6 R v = 8 R (x : x + v) for R one of C, £ and £ € £7 = (3u € J7)(£ = «) for Z7 a

subset of V*. Operational membership in the set V* expresses definedness in the
strong sense that a value is returned to any calling context.

Some key properties of operational approximation and equivalence are stated
below. These are all the properties that are needed to develop our first-order
theory. Proofs can be found in the appendix.

Theorem (Pre-order and equivalence): C and 3 are reflexive transitive
relations and = is symmetric (hence indeed an equivalence).

Theorem (Pointwise): Approximate values are pointwise approximate.

VoQV! => IUQI = |Vl| A (Vi< \vo\XvoiiCvUi)

§4 The TZum world. 35

Corollary (Pointwise): Data values are approximate only if equal.

do Q d\ ■& do = di

Theorem (Computational facts):

(i) Co >-► Ci =*• Co Eo Ci A Ci Eo Co

(ii) Co ^-* top A vQ A CI >—+ top A V\ =*> Co Eo Ci <=* uo Eo vi

To formalize the notion of substitution into semantic (dtrees, values, continua-
tions, and states) entities we consider entities with (zero or more) holes for dtrees,
continuations, or values. We will only need to consider entities with a single sort
of hole. Such entities are built in the same way as ordinary entities except that
we add a clause asserting that holes of a given sort are objects of that sort, then
xl&} is the result of filling the hole with S. Similarly for other sorts of holes.

Theorem (Substitution): For x a dtree or value

(subst.c) 7o E 7! => xhol E xbij

(subst.dt) S0 E Si =► xIM E Xlh]

(subst.v) DoQfi =► xbo] ExbiJ

Corollary (subst.env):

(V* € Frees(ip)(Zo(a) E fas)) => {<p : fr> E (<P - 6>

For full generality we consider dtrees as being generated by constructors analogous
to forms. Thus dtree holes can occupy the position of a free variable in a form.
This leads to the following corollary.

Corollary (subst.exp): U60 = {<po:£) E *i = (<Pi :f) and S[j = (<p{x/U} :£)
then

S{S0j = <</>{*M>} : 0 E SfSi} = {<p{x/<pt} : £>•

Theorem (Extensionality):

(ext.op) tfo E #i <*> (Vv)(t?0(u) E i?i(v))

(ext.co) 7o E 7i ^ (Vu)(7o A u C 7: A U)

where by abuse of notation we write i9(u) for (app(/, z) : / -<- tf, z -t- U), etc.

36
§4

The recursion theorem says that the recursion pfn Rec computes the least
nxedpomt of pfnls — closures of forms Xf.Xx.ip.

Theorem (Recursion): Let t9 be a closure of \f\x.<p then the recursion op-
erator Rec computes the least fixed-point of t? with respect to the operational
approximation ordering.

(fix) Rec(tf) 3 tf(Rec(tf))

(min) tf(tf0) C t?0 =► Rec(tf) C tf0

§5 Towards a theory of function and control abstractions 37

5. Towards a theory of function and control abstractions

The operational approximation and equivalence allow one to forget the details
of how a computation is carried out, but one must still use dtrees and states as well
as values in reasoning about properties of pfns. We would like to work only with
values. To do this we define a language for expressing extensional properties of
elements of the computation domain. In this language forms play the role of terms
and atomic formulas are based on the operational approximation and membership
relations. The semantics of the language is based on notions of satisfaction and
truth in the Thim model using environments as interpretations. The formal theory
is parameterized by a data structure Id just as the underlying intensional semantics
is. The axioms and rules fall into three groups. The basic logical theory includes
the first-order logic of partial terms, laws for defining and proving membership in
sets of values ("in laws"), and induction schemes. The computational laws include
the theory of the underlying data structure, rules for reasoning about sequences,
and rules simulating reduction steps. The final group of laws concern extensionality
and the recursion theorem. We derive some additional laws to illustrate the use
of the basic laws and to develop tools for proving properties of particular pfns.

5.1. The language and its semantics

We now develop a language and theory for expressing and proving extensional
properties of elements of the computation domain.

t> (Terms): The terms of the language are just forms where we partition symbols
into variables and constants. For variable symbols we will use italic identifiers such
as x, /, out, etc. For constant symbols we will use identifiers in ThisFont. The
constant symbols will be used to give names to data elements, data operations,
pfns and other defined constants and will generally depend on the particular choice
of data structure 2). We will not distinguish between constant symbols and the
constants they denote. For example in the case of S-expressions the symbol PairMk
is a constant symbol denoting the S-expression operation PairMk. In all cases Rec
is a constant symbol denoting the recursion pfn Rec.

> (Atomic formulae): Atomic formulae are (p0 E </>i and <Po € U for each
subset U of V*.1 We will use U, U0, ... as metavariables ranging over subsets of
V*.

> (Formulae): Formulae are built from atomic formulae in the usual way using
the logical connectives and quantifiers (A , -», V). The free and bound variables of
a formula are determined as usual. We will use $, $0, etc. to denote formulae.

In practice we use only subsets definable by simple operations.

38 §5

The meaning of a formula is defined by saying when it is true, which in turn is
defined in terms of the notion of satisfaction. Intuitively an environment f satisfies
a formula $ iff the closure of $ is true of the corresponding dtrees. In a statement
of the form f (= $ we assume that the domain of (contains the free variables of $,
and that constant symbols are interpreted by their denned values. The satisfaction
relation is defined by induction on the construction of formulae. The key is for the
atomic case. The remaining cases are the usual (Tarskian) definition.

> (Satisfaction):

Z^<P€U & {<p:£)eU

(MoA$i<»(fMoA{Mi)
£|=-*o * -(£Mo)

f l=(Vx)$ <* (Vt;)(^{a;^ü}(=*)

> (Truth): A formula is true if all environments (that map constant symbols are
mapped to their denned values) satisfy it.

(= * * (V£)(£ h *)

We will generally omit the (= sign and simply write * to assert that $ is true.

> (Abbreviations): We will treat 3, S, and the logical connectives (V, =► , <s>
, 3) as syntactic abbreviations in the usual manner. Thus we have

<Po 3 <Pi '•= <fii Q y?o

<Po = (fii := v?o E <pi A tpj C. ip0

$o V $! := -i(-i*o A -1$!)

$o =► $i := ~^o V $!

$o ^ $i := $o =» $i A $i =► $o

(3x)$:= -(Vx)(^0)

We often write formulas using bounded quantifiers. This is an abbreviation in the
usual manner. Thus (Vu € U)$ abbreviates (Vu)(u € U =*► $) and (3u € *7)$
abbreviates (3tt)(u € 17 A $).

§5 Towards a theory of function and control abstractions 39

> (Sorts): A sort is a non-empty subset of V*.2 Some examples are V, V, O,
P, and Co. If U is a sort we may declare (locally) that some variable u ranges over
U in expressing properties and giving proofs. Thus we may assert "for u ranging
over U we have $". This is equivalent to the assertion uu € U => $(u)". For
example working in the S-expression context if we specify z ranges over integers
and c ranges over continuations then Cons[z, c(y)] Si c(y) is equivalent to

z € Dint Ac€G => Cons[z, c(y)] £ c(y)

and means that

{z + »,c-(-7,j/ + t;}(= Cons[z, c(y)] £ c{y)

for all integers i, continuations 7 and values v.

A variable is assumed to range over V* unless otherwise declared. We may
write (Vx € V) to emphasize that x is required to range over all values. The
sort of a variable occurring bound in a form has no formal significance. Sorted
variables are used in such contexts just to indicate the intended range.

5.2. The basic theory

We observe two conventions in presenting the laws of our theory: free variables
are implicitly universally quantified; and if metavariables ranging over forms occur
in a law then it is a schema representing a family of laws one for each assignment
of forms to the form variables <p,tp0,.... We use the sign ■ to indicate axioms
and rules of our theory. The fact that they are true according to our definition of
satisfaction means that any derived consequences will also be true in our model
(or any other model of the axioms and rules).

5.2.1. Logic of partial terms and approximation

It is clear from the definitions of truth in Hum that we have ordinary classical
truth relative to the atomic propositions about operational approximation and
membership. The only trick is that we must account for the fact that for a given
interpretation of free variables a form may not have a well defined denotation - the
computation described may be context-dependent or may diverge. Thus the logic
is a classical logic of partial terms. This means that eliminating (instantiating)
universal quantifiers must be restricted to terms that are operationally equivalent
to values. The point is that in order to permit instantiation of a universal variable

2 Non-emptyness is needed to preserve the classical interpretation of quantifiers rela-
tivized to sorts. See for example [Goguen and Meseguer 1984] for discussion of problems
mat arise when variables are allowed to range over empty domains

40 is

by 9 we must insure that <p is operationally equivalent to some value. This is
guaranteed by operational membership in some set. From (forall.elim) and the
fact that operational membership in a set implies operational membership in V*
we can derive the instantiation rule for restricted quantification and the rule for
existential introduction.

■(Quantifier laws)

(forall.elim) (Vx)$ A <p € V* =► ${s/y>}

(forall.intro) $ =► (Vx)$ » if x does not occur free in any implicit assumptions

(inst) (Vu € U)$ A <p € U =► ${u/v?}

(exist.intro) <p e V* A ${z/v?} =* (3x)$

The fact that operational approximation is a partial order is expressed by the
reflexivity and transitivity laws.

■(Partial order)

(refl) <p C (p

(tran) <p0 C tpx A ipx C v?2 =► ^o EV2

(refl) and (tran) follow from the corresponding facts for dtrees.

Substitution of approximate forms for a variable in a third form gives approx-
imate forms and substitution of equivalent forms for a variable in a formula gives
an equivalent formula.

■(Substitution)

(subst.term) <p0 C ^ =*► <p{x/<p0} C Y?{X/^I}

(subst.opin) <p0 £ Vl A v?0 € Z7 => 9?i € Ü"

(subst.wfF) v?o = ^i =» *{*M>} «*• *{a?M}

(subst.term), and (subst.opin) following from the corresponding properties of
dtrees. (subst.wfF) can be derived from (subst.term) and (subst.opin) using
the basic logic of partial terms.

In carrying out proofs, we will use the basic logic of partial terms and opera-
tional approximation without explicit mention.

§5 Towards a theory of function and control abstractions 41

5.2.2. In laws

In order to make reasoning in our language completely syntactic we need to
provide a language for defining sets of values and rules for reasoning about such
sets. As a step in this direction we will specify a collection of basic sets of values
and some operations for generating additional sets. We will give some rules for
proving operational membership based on the constructions of forms and sets.
These rules are analogous to rules for type assignment in a formal type system.

The basic sets of values include 0 (the empty set), Mt (the singleton set con-
taining only the empty sequence), D, O

D
, P, and G>. There may be additional

basic subsets of D depending on the given data structure. For example in the
case of S-expressions we will also have Dmti, Dint, D8tr, and Dpair as basic sets.
From the basic sets we can obtain additional sets by operations including finite set
formation {vi,...,vn}, union (U), intersection (D), formation of finite sequences
(*), function space formation ([—►]), concatenation ([,]), and selection (1st, rst).
Finite set formation, union, and intersection are the usual set-theoretic operations.
Formation of finite sequences is described in §3. Concatenation and selection are
the lifting of sequence operations to sets of sequences. Thus

u € [U0,Ui] «*• (3u0 € U0,U! € Ui)(u = [u0,tii])

tx € 1st (U) «» (3«' € U)(u = 1st («'))

u € r8t (CO «* (3u' € U)(u = rst (u'))

Function space formation selects the pfns that compute total functions from the
domain component to the range component.

p € {Uo -* U{\ <*> (Vuo € *7o)(3ui € Ui)p(uQ) £ m

We write [U0,..., Un -► U] for [U0 ... — [Un -* U]...] and U0 0 Ui for U0 U ^
when Uo n U\ = 0 (disjoint union).

Some examples are

0 = {}
Mt = {}* = {D}

o = oD e p e Co

V = D0O

V+ = [V,V]

V* = Mt 0 V+

42 55

The following are some basic laws for operational membership. They will be
referred to collectively as "in laws". The validity of these laws follows easily from
the definitions.

■(Logical in laws)

x € U0 A U0 C I7i => x £ Ux

x e (Uo u Uj) =► x e u0 v x e ux

x € U0 A x € Z7j =* x € (17"0 n U{)

■(In laws for forms)

x € V ;; x any variable symbol

x € {x}

Xx.tp e P

o 6 [D* -+ D*] ;; o a data operation symbol

(Vx € ?7o)(^ € I7i) =* Ax.<? € [U0 -> U{\

f€[U0^Ux}Ax£U0=i> /(x) € Ui

x e Mt =► x s mt

x0 € ?7o A X! € Ux =» [xo.ari] € [*7o,*7i]

x€U => fst(z) € l8t (*7) A rst(x) € r9t (U)

top € Co

(Vc € Co)(y> e £7) =*- note(c)y> € U

5.2.3. Some proof schemes

Standard techniques for proof include arguments by cases and induction Such
arguments are valid in 72am. Argument by value cases corresponds to computation
using if and is often used to prove properties involving conditional expressions.

■(Vcases) Since V* = Mt 0 V+ to prove that $ is true for all x we need only
prove $ holds in the case x S£ mt and in the case that x € V+. Formally we have
the scheme

(Vx)(x ^Mi=^$Ax€V+=^$)=> (Vx)$

§5 Towards a theory of function and control abstractions 43

A general principle of induction is induction on a well-founded ordering. A
special case is rank induction.

■(Well-founded induction) Let U be a sort with well-founded order X. For
example take U to be N and X to be < or take U to be the S-expressions and -<
to be the sub-expression relation. We may prove that $(x) holds for x € U by
proving that for any x € U, $(x) follows from the assumption that $(y) holds for
all y smaller than x. This is formalized by the the following induction scheme

(Vx € U)((Vy € U)(y -< x =► $(y)) =* $(*)) => (Vx € #)($(*))

For example induction on < is the usual course-of-values induction on the natural
numbers and induction on the subexpression ordering on S-expressions is the usual
S-expression induction.

■(Rank induction) The length of a sequence gives rise to a well-founded ordering
on a set of sequences and the size of an S-expression gives rise to a well-founded
ordering on a set of S-expressions. More generally, let U be a sort and let p be a
function from U to N. p is called a rank function and for u € U, p(u) is called the
rank of u. The ordering -<p on U defined by

y<px<& p(y) < p(x)

is a well-founded ordering. Induction on rank is formalized by the rank induction
scheme

(Vx € U)((Vy € U)(p(y) < p(x) =J> $(y)) =* $(x)) =» (Vx € U)($(x))

5.3. Computational laws

The computational laws are based on the computation laws for dtrees. The
intuition underlying the computational laws is that computation states and steps
can be simulated using forms and operational equivalence. Continuations are
represented by forms satisfying <p € Co and dtrees are represented by arbitrary
forms. In the step rules meta variables ranging over continuations (resp. values)
are replaced by variables ranging over continuations (resp. values). Begin and
return state formation is represented by application. Using the computation laws,
computations steps are simulated by (provable) operational equivalence. Thus
if <p is closed and returns a value v in the empty context then we can prove
top(v?) = top((,öv) where v?v is the syntactic representation of v. This is made more
precise in the appendix.

The computation laws fall into four groups. The first group concerns general
laws for sequence operations. These are just the equational laws for a sequence

44 §5

structure with the empty sequence, concatenation, and projection operations (see
§3). The second group concerns embedding the theory of the underlying data
structure. The third group concerns equations between forms representing states
that correspond to steps building up, capturing, or discarding computation con-
text. The fourth group gives basic laws for application and conditional forms.

■(Sequence laws) For a ranging over singleton values (V)

fst[>, x] £ a

rst[a, x] £ x

fst(mt) £ rst(mt) £ mt

x 2 [fst(x), rst(x)]

[mt, x] £ x 3 [x, mt]

[[x,y],z]*[x,[y,z]]

The theory of the underlying data structure is embedded by defining a set
of forms called data forms that are forms syntactically guaranteed to denote se-
quences from the data domain. We then interpret £ restricted data forms as =
and 6 restricted to data forms and subsets of D* as €•

> (Data forms): Let X be a set of variable symbols. The set of data forms over
X is the least set containing X, the data constants, and mt, and such that if <p,
Vim are data forms over X and o is a data operation then o(y?), [<putp2], fst(y>\
and rst(</?) are data forms over X.

■(dform) For X ranging over data sequences, <ptVi data forms over X and A a
sort contained in D*

«(data) <p G D*

■ (eq) K (p0 = <f! holds in 2) then v?0 = Vi-

.(in) If v? € A holds in 2) then <p e A.

Notes

The introduction of the notion of data form allows us to view the language of
Ihim as an extension of the usual language associated with such a data structure.
Thus we have reduced reasoning about data forms to reasoning in the structure

We can extend the class of data forms by adding constants denned by pfns
that compute functions on the data domain to the list of data operations. This
corresponds to enlarging the data structure by adding the defined data operations.

§5 Towards a theory of function and control abstractions 45

An alternative method of embedding the theory of the underlying data struc-
ture is to assume that it is specified by a collection of axioms (and constraints such
as initiality) and include this specification in the laws of 1him. Some care needs
to be take that the intended interpretation of the specification is not changed in
the process.

Endnote.

■(Context sensitive laws) For c, c' ranging over continuations

(app) c(v?0(¥>i)) ^(coappiO^X^o)

(appi) (c o appi^^Xx) £ (c o appc(x))(pi)

(if) c(if(v?o,V?i,V2)) = (coifi(v?i,(Iö2)X¥'o)

(cart) c(cart(y>o,Vi) = (cocarti(<pi))(p0)

(carti) (c o carti(^1))(x) £ (c o cartc(a;))((lp1)

(fst) ■ c(fst(p0)3(cofstc)(po)

(rst) c(rst(p0) = (c o rstc)(y>0)

(note) c(note(c)<,c) = c(y?)

(sw) c(c'(:r)) S c'(x)

■(lam and if reductions)

(letv) let{x -+. x}ip = (Xx.(p)(x) = <p

(ifi.nmt) x € V+ =► ti(x,<pi,y>2) — Vi

(ifi.mt) if(mt,^i,v92) = ^2

5.3.1. Extensionality and recursion

Our final set of basic laws expresses the essence of operational approximation
and equivalence, (op.ext) and (note.abs) follow from the corresponding dtree
properties. Together with the substitution and order laws they say that opera-
tional approximation and equivalence are compatible relations (are preserved by
form constructions) [Barendregt 1981; p. 50]. (c.ext) is just the definition of
approximation on dtrees.

■(Extensionality)

(op.ext) f e® A g eQ A (Vx)(/(x) C g(x)) => f Q g

(note.abs) (Vc e Co)(tp0 C. <px) => note(c)v?0 E note(c)^i

(c.ext) (Vc € Co)(c(y>») C. c(tph)) => <^a C <ph ;; c not free in Va, ^b

55

The recursion theorem says that the recursion pfn Rec computes the least
fixedpoint of pfhs of the form \f.\x.<p. It follows from the corresponding theorem
for pfns.

■(Recursion theorem)

(rec.df) Rec(x) € P

(recfix) F 2 \f.\x.y A / £ Rec(F) =» /(x) S <p

(rec.min) F S A/.Ax.<^ A / 3 Rec(F) A F(5) C^/Cj

Note, (recfix) says that pfns defined by recursion satisfy the equation obtained
by replacing 4- by 3. The converse of (recfix) is not necessarily true since
recursion equations contain additional information specifying how computations
are to be earned out. For example f(x) 3 f(x) is trivially true but f{x) <- f(x)
implies that / is the everywhere undefined pfn. The recursion theorem extends
the least fixed point theorem for the graph model of the lambda calculus [Scott
1976J to a language with control abstractions. Endnote.

5.4. Some simple derived laws

To illustrate the use of the basic laws and the logic of partial terms we will
derive some simple (and useful) consequences. We begin with two simple exercises.

Exercise. Prove the following corollary to the (letv) law.

<Po € V* =*. let{* -«- (po}<p = <p{x/<p0}.

Exercise. Prove (rec.df) and (recfix) within the first-order theory. Hint use
the basic laws for computation, membership, and the extensionality law.

Theorem (nmt): a € V =*► a ^ mt

Proof (nmt): By the intersection and emptyset inlaws we have

a€VAa^mt=^a€VnM< = 0

Dnmt

Value forms give simple syntactic criteria for forms *pv guaranteed to satisfy

> (Vform): Value forms are the least set of forms containing the variable and
constant symbols, mt top, the lambda-forms (A*.*), and containing fov 1>f,v 2],
f.t(*v), r«t(„v), and rf^,^,^,,). whenever^, ^ and ^ 2 are vSue onn

§5 Towards a theory of function and control abstractions 47

Theorem (vform): If <^v is a value form then <pv € V*.

Proof (vform): by induction on the generation of value forms and the in laws.
^vform

We will use (vform) without explicit mention to instantiate (unrestricted) uni-
versal variables.

Direct application of (letv) requires that the argument expression be opera-
tionally equivalent to a value. It is also valid when the let variable occurs in an
evaluated position in the body. This will be made precise later. Here we prove a
special case in order to illustrate the use of the computation and extensionality
laws.

Theorem (idcnv): \et{x ■+ (p}x = ip

Proof (idcnv): Note that let{x -«- <p}x = (\x.x)(ip).

(i) c((Ax.x)(¥>)) 3 (c 0 appc(Ax.x))(^) ;; (app,appi)

(ii) (c 0 appc(Ax.x))(x) £ c((Xx.x)(x)) ;; (app,appi)

(iii) c((Ax.x)(x)) 3 c(x) ;; (letv)

(iv) c 0 appc(Ax.x) 3 c ;; (op.ext) and (iii)

(v) c((Ax.x)(v?)) = c(v?) ;; (i) and (iv)

(vi) (Xx.x)(<f) 3 <p ;; (v) and (c.ext)

As advertised, we have used the laws for instantiation and substitution in the
above proof without explicit mention. We leave it as an exercise for the reader to
fill in the details. Djdcnv

Another let-law is the let-permutation rule. This rule allows nested let expres-
sions to be flattened.

Theorem (let.perm):

let{x + let{y + <ys0}v?i}v?3let{y + y;0}let{x-<-</>i}^

where y is not free in tp.

Proof (let.perm): Assume y is not free in <p. Then by the computation laws

(i) c(iet{x + let{y + <po}<Pi}<f) = ((c o appc(Ax.<^)) 0 appc(Aj/.^1))(v3o)

(ii) c(let{y + <p0}\et{x -e <pi}y?) 3 (c 0 appc(Ay.let{x -e <pi}<p))(tp0)

(iii) ((c o appc(Ax.<^)) 0 appc(Ay.Vl))(y) 3 (c o appc(Ax.^))(<^)

= (c 0 appc(Ay.let{x -e <pi}<p))(y)

48

§5

and by (op.ext) using y not free <p

(iv) (c o appc(Ax.^)) o app^Ay.^) Sco appc(Ay.let{x -<- <px }<p)

and by (iv)

(v) ((c o appcCAa;.^)) o appcCAy.^))^) 3 (c o appc(Ay.let{* -«- <pi}<p))(<p0)

Hence by (i),(ii),(v) and (c.ext) we are done. Ojet.perm

Proofs of the remaining theorems can be found in the appendix. Using (Ietv)
(op.ext) and (rec.min) (for (bot)) we have the Mowing standard properties of
partial functions.

Theorem (Laws about functions):

(lam.abs) (V* € V)(Vo ~ Vl) =* Ax.^0 = Xx.Vl

(op.eta) / € O =^ Xz.f(z) £ /

(cmps.id) / € O =*> I o / S / S / o I

(cmps.assoc) (f o g) o h ^ f o(g o h)

(bot) $ g O => Rec(A/.Ax./(x)) C y

Note. InTtom (op.ext) is stronger than (lam.abs) since the computation do-
main contains operations other than pfns (namely continuations and data opera-
tions^ There are alternative formulations in which only pfns occur as values and
this distinction goes away, (op.eta) is a limited form of the eta-conversion rule
for lambda calculi. This is because in the pure lambda calculus there are only
functions so the bounded quantification is trivial. When there are objects other
tnan functions then (eta) only makes sense in the restricted form. Endnote.

By (vcases) arguments using (ifmt) and (ifnmt) (and also (op.ext) for
(lt.lam)) we have the following properties of if.

Theorem (If laws):

(if.sort) ft^0A pi € Ux =* if(z,^>, Vi) € UQ U Ux

(if.elim) if (z, <p,ip)^<p

(if.perm) if(*, if (y,^^if(y>«^^ a if(y> .^^^ jf (^^^

(if.lam) Ax.if(z, cp,, ^2) s jf(2, Ax.Vl, \x.<p2)

(if.subst) fo, e V+ =► Vl ä „,) A(^mt^^2^4)A^V*

=► i%,^i,V2) = if(<^,^3,^4)

§5 Towards a theory of function and control abstractions 49

From the basic computation rules for cart, fst, rst and the in laws we have the
following.

Theorem (Cart laws):

(cart.assoc) [[<p0, VI],^] = [</>o, [<Pi, V2]]

(fst.rst) x € V+ => ht[x,y] = fst(x) A rst[x,y] £ [rst(x),y]

Note that the law x = [fst(x), rst(x)] cannot be generalized to arbitrary terms. A
counter example is note(c)c. This is because c^co carti(rst(x)) 0 fstc.

From the computation rules for noting and switching using (c.ext) we have
the following.

Theorem (Note laws):

(note.triv) note(c)y> = if ;; c not free in <p

(note.id) note(c)c(y>) = if ;; c not free in (p

(note.esc) c € Co =>• c 0 (Ax.note(c)(/?) = c 0 (Ax.<,i?)

(note.ren) note(c)note(c')</? = note(c)<,p{c'/c-}

■(Extending laws to extended syntax) Laws for lambda application and
let generalize in a straightforward way to the extended syntax for currying and
splitting sequence arguments. For example

(letv.cart) aieV A ... Aa„€V =!► (A[ai,...a„,y]v?)[a1,...a„,y] ^

(letv.curry) (A(ari,...x„V)(xi, ...xn) = y

The scheme for cart associativity says we can treat cart as a multi-ary operation
without ambiguity.

5.5. Puzzling with current puzzle.

To illustrate some of the power and also weaknesses of our theory we solve
(formally) a puzzle posed in [Queinnec and Seniak 1989]. call-cc is the Scheme
control abstraction primitive and can be represented in Ihim by

> Cwcc = A/.note(c)/(c)

The puzzle is: what is the meaning of the following two Scheme expressions?

(i) (call-cc call-cc)

50 §5

(ii) ((call-cc call-cc) (call-cc call-cc))

Translated into Ihim we ask the meaning of the corresponding Ihim expressions,

(i) Cwcc(Cwcc)

(ii) (Cwcc(Cwcc))(Cwcc(Cwcc))

The solution is given by lemmas (cwcc.2) and (cwcc.2.2) below. Lemma (cwcc)
is the analog of the note law.

Lemma (cwcc): From the note law we have (for c ranging over continuations)

c(Cwcc(/)) 3 c(f(c))

Lemma (cwcc.2): Cwcc(Cwcc) 2 note(c)c

Proof (cwcc.2): We have by two applications of (cwcc) and the sw law

C(CWCC(CWCC)) 2 C(CWCC(C)) ;; by (cwcc)

= C(c(c)) ;; by (CWCC)

— c(c) ;; by the sw law

2 c(note(c)c) » by the note law

Hence by extensionahty we are done. QcWcc.2

Lemma (cwcc.2.2): (Cwcc(Cwcc)(Cwcc(Cwcc))) is undefined - describes an
infinite computation in every context. Formally we can express this as

(Cwcc(Cwcc)(Cwcc(Cwcc))) f V*.

Proof (cwcc.2.2): This will be an informal outline. We take the computation
laws seriously as reduction rules and show that in any context the computation
sequence for c(note(c)c)(note(c)C) is infinite for any c. Let c0 = coappi(note(c)c))
and cn+i = c o appc(cn) Then

(i) c(note(c)c)(note(c)c) xU c0(c0) and

(ii) cn(cn) >—► cn+1(cn+1) for any n.

Case (i): By the computation rules we have

c((note(c)c)(note(c)c)) >!♦ (co appi(note(c)c))(note(c)c)

^(co appi(note(c)c))(c o appi(note(c)c)) = c0(c0)

§5 Towards a theory of function and control abstractions 51

Case (ii): By induction on n and the computation rules we show c„(/) >-—i
c o (appc(/))(note(c)c). For n = 0

co(/) = (coappi(note(c)c))(/) y-*• (c o appc(/))(note(c)c)

and for n > 0

c„+i(/) A c(cn(f)) A c„(/)

c o appc(/)(note(c)c) ;; by induction hypothesis

Now it follows easily that

Cn(cn) >—► cn+i(note(c)c) >—► cB+i(c„+i).

Eii Pcwcc.2.2

Note". It remains an open question how to axiomatize computation and induction
on the length of computation so that arguments like the above can be carried out
within the formal theory rather than by appeal to the model. Endnote.

5.6. Context motion

The context motion theorem gives some general laws for moving expressions
across a special class of contexts we call evaluated position contexts. The notion
of evaluated position context extends the notion of evaluation context (contin-
uation) by looking inside lets and notes (see also [Felleisen and Friedman 1986,
Felleisen 1987]). We will define the notion of evaluated position contexts, state
the main theorem and derive some useful consequences to illustrate application of
the theorem.

5.6.1. Context motion theorem

> (epcx): The set of evaluated position contexts and the variables trapped by
an evaluated position context are defined in Figure 7. Evaluated position context
is the least set closed under the constructions in the first column and trap(C), the
variables trapped by the context C is defined in the second column by induction
on context construction. C[y>] is the result of replacing [J by ip in the first step of
the construction of C. Context equality is modulo alpha-conversion as usual with

52
§5

c trap(C)

[] 0
Co(vi) trap(Co)

xid) trap(Ci)

[Ca,<pi] trap(Co)
[*,Ci] trap(Ci)

ft(Co,<pi,<pi) trap(Co)

lf(*.Ci,Ca) trap(Ci)Utrap(C2)

fst(Co) trap(Co)

rst(Co) trap(Co)
\et{z + x}C0 {z} U trap^Co)

note(c)C0 {c}Utrap(Co)

Figure 7. Evaluated position contexts

the restriction that a bound variable with a hole in its scope cannot be renamed.
Note that Frees([x,<p]) n trap(C) = 0 implies that C[<p\ = C[xJ{x/v?}.

Theorem (context motion): Let C be an evaluated position context and let
c range over continuations. Assume Fnu[<p, x, c, k] n trap(C) = 0 and x, X; are not
free in C. Then

(letx) \et{x + <p}Clxj*Cl<p]

(escape) CIc(y>)J £ c(y>)

(let.dist) C[let{x -«- i^Vol = let{* + ^}CW

(if.dist) CHiffa,^,^)] s i%,CM,CM)

(note.dist) C[note(fcVI S note(fc)let{Jb + * o Ax.C[xJ}C|fcJ

Proof (context motion): The proof of (letx) is a straightforward induction on
the construction of evaluated position contexts, (escape) follows from (letx) and
the special case of escaping from the argument of a let expression. For (let.dist)
we observe that \«{x + <p}<p0 = (Ax.v?)(9o) and thus we can use (letx) followed
by (letv) to distribute the let. (if.distrlet.dist,note.dist) are not simple appli-
cations of (letx) since <p0,tpi, <f2 do not need to satisfy the restriction placed on <p.

§5 Towards a theory of function and control abstractions 53

(if.dist,note.dist) axe proved by induction on the number of trapped variables in
C. The key is to note that (by induction on construction of C) either C has no
trapped variables (is a pure evaluation context) or we can find Co, Ci such that
trap(Co) = 0 and C = C0[let{x -f-ujCJ or C = C0[[note(c)Ci]]. The base case
is proved using (letx) and the special cases where the context is the argument of
a let. The induction cases are proved using the above decomposition of contexts
and (note.ren,note.esc,note.if) from above. Ocontext motion

5.6.2. Consequences of the context motion theorem

Corollary (defn.inst): If F is denned by

F(ari,...,*,-,...,x„) <- C[xi]

then
F(*i,...,?,...,x„)SC%>J

Proof (defn.inst):

F{xu...,<p,...,xn)*\et{xi+<p}F(xii...,xii...,xn) ;; (letx)

Slet{x,--ev»}C[ar,-] ;; (rec.flx)

= CM ;; (letx)

'-^defn.inst

Corollary (escape): For c ranging over continuations

(esc.fun) (c(v?o))vi = c(y>0) ;;C = [](vi)

(esc.arg) z{zu... ,zJ_1,c(^j),..., y?n) 3 c(^)

;; C = z(zi,...,zj-i,[],...,ifn)

(esc.cart) [zu ... Zj-Uc(<pj),... v?n] S c(<p-})

;; C = [zi,...,zj-i,[],...,Vn]

(esc.if) if(c(y?0),Vi,¥>2) = c(v?o) ;;C = if([],v»i,V2)

(esc.fst) fst(c(v>0)) 2 C(Y?O) ;; C = fst([])

(esc.rst) rst(c(^0)) S c(v?o) ;; C = rst([])

54 §5

Corollary (if.dist):

(if.if) •f('%o,yi,V2),Va^b) = if(vo,if(¥'i,^,¥>b),i%2,V*,Vb))

(if.or) ifCorO^,^),^,^) £ if(v?a,<^,i%b,¥>i,¥>2)) ;; (if.if), (if.eval)

(if.fun) (ti(<po,<Pu<P2))<p2ti{<po,<pi((p)J<p2(<p)) ;;C = [](<p)

(if.arg) z(2l ...zh i%>a, y,b, v?,),... ^n)

£ i%*,z(*i,... zj,<ph,.. :,<pn),z(zu... ,zj,<pc,... >Vjn))

;; C = z(r1,...,z>_1,[],...,¥?n)

(if.cart) [zu... Zj,i%a, Vb, V?c), •. • ,p„]

= if(v>», [«i, • • • *;, Vb, • • •, ^n], [«i, • • • Zj, <pc,..., <pn])

;; C = [z\, •.., f,--i,[],..., vn]

(if.let) V6V* =* let^^^if^o^^^jsjf^oje^-j-^ijetli-«.^^)

;; C = \et{x -<- v?}[], x not free in <p0

(if.note) note(c)if(v50,^i,^2) = if(vo,note(cVi,note(c)v>2)v?

;; C = note(c)[], c not free in <p0

Corollary (let.dist):

(let.app) zOetlx-t-^o^OSlet^-e^o}«^) ;; C = z([])

(let.note) let{x -<- ^}note(c)v?i SS note(c)let{x -e p}^ ;; C = note(c)[]

;; c not free in <,p

Corollary (note.dist):

(note.fun) (note(cVo)vi = note(c)let{c + c o appi((Jö1)}v?0(^1)

;; C = [](v?i)

(note.arg) 2(note(c)^) 3 note(c)let{c + co appc^)}*^) ;; C = z({])

(note.test) j^note^,^,^) = note(c)let{c + co ifi(^,^)}i%o,Vi^2)

;; C = if([],<pi,<p2)

(note.carti) [note(c)v?o, Vi] = note(c)let{c-eco carti(v?i)}[v?o, Vi]

§5 Towards a theory of function and control abstractions 55

(note.caxtc) [z, note(c)<^i] = note(c)let{c -«-co cartc(z)}[z, <pi] ;; C = [z, []]

(note.fst) fst(note(c)v?0) = note(c)let{c-e-c ofstc)fst(^o) ;; C = fst([1)

(note.rst) rst(note(c)y?0) = note(c)let{c-eco rstc}rst(^0) ;; C = rst([])

Note. The corollaries to (escape) and (note.dist) parallel the rules for moving
context capturing and aborting primitives to the outside of an expression given in
[Felleisen and Friedman 1986]. Endnote.

56 §6

6. Proving properties

In the previous section we showed how to interpret forms as terms in a lan-
guage for expressing extensional properties of pfns and more generally properties
of sequences from the computation domain. The formal semantics of this language
was defined and general laws for reasoning in this language were developed. Now
we will fix the data structure to be the S-expression structure and use these tools
to formulate and prove the extensional properties of pfns expressed informally in

6.1. Vari-ary functions and function schemes

Recall that StrConc is the string concatenation operation denned by

> StrConc[x,y] <- StrMk[StrUn(x),StrUn(y)]

The fact that StrConc maps pairs of strings to strings is formalized as follows.

Theorem (StrConc.sort): StrConc € [[D8tr, D8tr] -► D8tr]

Proof (StrConc.sort): Assume that a0 € D8tr and ax € D8tr. Then we
must show that StrConc^o,^] € Dstr. Note that StrUn(a0), StrUn(ai), and
StrMk[StrUn(a0),StrUn(ai)] are data forms. Thus we have

StrConcK,^] 2 StrMk[StrUn(a0),StrUn(a1)] » rec.fix

[StrUn(a0),StrUn(a1)] § D*nt ■■ S-expression theory

StrMk[StrUn(a0),StrUn(ai)] € 0str » S-expression theory

'-'StrConc.sort

The fact that StrConc is associative and has the empty string (StrMk(mt)) as
left and right identity amounts to saying that the domain of strings with StrConc
and the empty string constitutes a monoid. This is formalized by (StrConc.monoid).

Theorem (StrConc.monoid): For strings a0, ai, a2

StrConc[StrConc[a0,ai],a2] 3 StrConc[a0,StrConc^!,a2]]

StrConc[StrMk(mt),a0] 2 StrConc[a0,StrMk(mt)] 2 a0

Proof (StrConc.monoid): Exercise Dctrr„„,. -j
' otrLonc.monoid

§6 Proving properties 57

Now we turn to the Sit example. The point here is to show how properties
of higher order functions can be thought of as schemes for proving properties of
instances.1 Recall that Sit is defined by

> Sit(/, b, x) +- if(x, /(fst(x), Sit(/, 6, rst(x))), b)

The sort of Sit is given by (Sit.sort).

Theorem (Sit.sort): For any subdomains Ao, A\ of the computation domain

Sit€[[Ao,Ai->Ai],i4i,AS->;4i]

Proof (Sit.sort): Assume / € [A0, A\ —► Ai], b € Ai, and x € AQ. We will
show by induction on x that Sit(/, b, x) € A\.

Case (x = mt): Sit(/, 6,x) £ 6

Case (x = [cto,xi] € [Ao,AJ]): by computation Sit(/, 6,x) = /(ao,Sit(/, i,xi)).
By the induction hypothesis we have Sit(/,b,x\) € A\ and by the type of / we
have /(a0,Sit(/,fe,X!)) € Ai. ÜSit.sort

Now we use (Sit.sort) to deduce the sort of ListMk. Recall that ListMk is
defined by

> ListMk(x) <— Sit(Ax,y.Cons[x,y],Nil,x)

For any subset A of S-expressions ListMk maps sequences from A to lists from A.
To formalize this we need to formalize the notion of "lists from A".

Definition (List): For any set A of S-expressions List(A) is the least set
containing Nil and Cons[a, x] for each a in A and x in List(A).

Note that by definition of List(A) we have

Lemma (Cons.sort): Ax,y.Cons[x,y] € [A, List(A) —+ List(A)]. Also, the
domain of all lists is just List(Bsexv).

Now we can formally express the sort of ListMk as follows.

Theorem (ListMk.sort):

A C DSexp => ListMk e [A* -► List(A)]

1 A more substantial example is the use of functional to describe search strategies
[Talcott 1985, Appendix B].

58 §6

Proof (ListMk.sort): by (Sit.sort) and (Cons.sort) DListMk.sort

Note. An alternative definition of lists from A is List(A) = ListMk(,4*), extend-
ing ListMk to sets of S-expression sequences and we could add ListMk to our list
of set constructors. Endnote.

Exercise. The inverse of ListMk is ListUn. Define ListUn and show for sequences
of S-expressions u and lists x

ListUn(ListMk(u)) 3 u

ListMk(ListUn(x)) £ x

Exercise. Define ListConc using ListMk in anology to StrConc and prove that for
lists x, y

ListConc(x,y) 2 Append(x,y)

where Append is defined by the usual recursion on lists.

> Append(x,y) «- if(Mtlp(x),y, Cons(Car(x), Append(Cdr(x),y)))

various Exercise. Since DseXp is finitely and freely generated, and tests for the
sorts are provided, equality between S-expressions SexpEq is computable. Define
pfns that test for equality of S-expressions of each sort: IntEq for integers, StrEq
for strings, and PairEq for pairs. The test pfns should return the empty sequence if
the arguments are not of the correct sort or are not equal. Otherwise they should
return one of the arguments. Prove that IntEq € [[D8eXp,D9eXp] - Dsexp] and that
for x, y ranging over S-expressions

x € Dint A x = y =>► lntEq(x,y) £ x

-^0 € Dint) V x ^ y =* lntEq(x,y) 3 mt

Similarly for StrEq and PairEq. SexpEq is defined by

SexpEq[x, y] 3 or(lntEq[x, y], StrEq[x, y], PairEq[x, y])

SexpEq is not specified for non-S-expression arguments. Prove that for S-expressions

SexpEq[x,y]-{^ l = V
y

§6 Proving properties 59

6.2. Object behaviors.

The set of message-reply sequences constituting an objects observable behav-
ior can be thought of as a tree with edges labeled by messages and nodes labeled
by replies. Such a tree is characterized by a function mapping sequences of mes-
sages (histories) to a function (the immediate behavior relative to the history)
mapping messages (the current message) to replies. Given a behavior function B,
we say that a pfn t? describes behavior B if there is a family of pfns t?h indexed
by sequences of messages h such that i?D = t? and t?h(r") — ö[h,m]iB(h, TU) for any
(acceptable) message sequence h and message m.

Recall that a cell with contents a responds to a get message by returning a
and responds to a set message with contents component b by becoming a cell with
contents 6.

Using the tests Getmsg and Setmsg to distinguish message types, and the
selector Contents to extract the contents component of & set message, the cell
behavior function C(a) can be specifyed (by induction on the history) as follows.

Definition (Specification of cell behavior):

Getmsg(m) =*> C(a)(a)(m) = a A C(a)[m,h](m') = C(a)(h)(m')

Setmsg(m) =>• C(a)(o)(m) = □ A C(a)[m, h](m') = C(Contents(m))(/i)(m')

Now we can make the statement that a pfn describes the behavior of a cell with
contents a precise by saying it generates the behavior C(a). The correctness of
the pfn Cell is expressed the following theorem.

Theorem (cell.beh): Cell(a) generates the behavior C(a).

Recall that the pfn Cell(a) is defined by

> Cell(a) «— Am.if(Getmsg(m), [Cell(a),a],

if(Setmsg(m), Cell(Contents(m)),

Cell(a)))

To get a better understanding of cell behavior we define three auxiliary pfns. Next
computes the next state of a cell, Reply computes the reply to a message, and Eff
computes the effect of a sequence of messages on the state of a cell.

> Next(a, m) «- if(Getmsg(m),a,if(Setmsg(m), Contents(m),a))

> Reply(a,m) <- if(Getmsg(m), a, mt)

> Eff(a,/i) +- if(/i,a,Eff(Next(a,fst(/i)),rst(/i)))

60 56

Then we have the following useful facts.

Lemma (factoring cell behavior):

.(cell.response) Cell(a)(m) £ [Cell(Next(a,m)),Reply(/»,m)]

.(next.eff) EfF(a, [h,m]) = Next(Eff(a, h),m)

.(reply.eff) Reply(Eff(a,Ä),m) = C(a)(h)(m)

Exercise. Prove the factoring lemma.

Now we can prove (cell.beh)

Proof (cell.beh): We must find a family of pfns that satisfy the definition of
generates a behavior". Take t?a,h = Cell(Eff(a,Ä)). Then we have t?a0 = Cell(a)

and ' v '

t?»,h(m) 3 [Cell(Next(EfF(a,/0,m)),Reply(Eff(a,/i),m)

;; by (cell.response)

= [Cell(Eff(a, [h, m])), C(a)(h)(m)} ■■ by (next.eff) and (reply.eff)

Dcell.beh

6.3. The tree product pfns

Now we will prove the equations (Tpc.Tp) and (Tps.Tp) which express the
tunctional correctness of the tree product pfns Tpc and Tps. The key to these
proofs are the equations (Tc.Tp) and (Ts.Tp), characterizing the functions com-
puted by the auxiliary pfns Tc and Ts. For the reader's convenience, we repeat
the definitions of Tp and friends here.

> Tp(x) «- if(Atom(x), x, Tp(Car(x)) * Tp(Cdr(x)))

> Tpc(x) <- Tc(x, I)

> Tc(x,/) «- if(Atom(x),if(Zerop(x),0,/(x)),Tc(Car(x),Ta(x,/)))

> Ta(x,/) <- Ay.Tc(Cdr(x),Td(y,/))

> Td(y,/) <- Xz.f(y*z)

> Tps(x) <- note(c)Ts(x, c)

> Ts(x, c) <_ if(Atom(x), if (Zerop(x), c(0), x), Ts(Car(x), c) * Ts(Cdr(x), c))

> lnz(x) «- if(Atom(x),Zerop(x),or(lnz(Car(x)),ln2(Cdr(x))))

§6 Proving properties 61

We begin with a lemma giving the sorts of Inz and Tp and expressing the fact that
if a zero occurs in a number tree then the tree product is zero.

Lemma (Tp.lnz): For x ranging over Ntree

(Inz.sort) Inz € [Ntree -► V*]

(Tp.sort) Tp € [Ntree -► N]

(Inz.Tp) lnz(x) € V+ => Tp(x) £ 0

Proof (Tp.lnz): an easy induction on number trees. Oyp |nz

Functional characterizations of the tree product functions are given by (tprod).

Theorem (tprod): For x ranging over Ntree and c ranging over Co

(Tpc.Tp) Tpc(x) £ Tp(x)

(TcTp) Tc(x, /) * if (lnz(x), 0, /(Tp(x)))

(Tps.Tp) Tps(x) 2 Tp(x)

(Ts.Tp) Ts(x, c) 2 if(lnz(x), c(0), Tp(x))

We first prove (Tpc.Tp) and (Tps.Tp) assuming (Tc.Tp) and (Ts.Tp). The proof
of (Tps.Tp) was given in §2. We repeat it here to be seen in light of the formal
semantics.

Proof (Tpc.Tp): Assume x ranges over Ntree. Then

Tpc(x) 2 Tc(x, I) ;; dfn Tpc

2if(lnz(x),0,l(Tp(x))) ;; (Tc.Tp)

2if(lnz(x),0,Tp(x)) ;;(id,letv)

2 Tp(x) ;; (Tp.lnz)

^Tpc.Tp

Proof (Tps.Tp): Assume x ranges over Ntree. Then

Tps(x) 2 note(c)Ts(x,c) ;; dfn Tps

2 note(c)if (lnz(x), c(0), Tp(x)) ;; (Ts.Tp), (note.abs)

= if(lnz(x), note(c)c(0), note(c)Tp(x)) » (note.if)

= if(lnz(x),0,Tp(x)) ;; (note.triv)

= Tp(x) ;; vcases,(Tp.inz), (Inz.sort)

6°
^ §6

^ps.Tp

Now we prove (Tc.Tp) and (Ts.Tp). In each case we begin with the righthand
side of the equation and obtain the lefthand side by a series of steps that are
essentially program transformations (see for example [Scherlis 1981]). Thus, if we
had started with (Tc.Tp) and (Ts.Tp) as definitions then each step would produce
a new definition, preserving the function computed. At the final step we obtain
the recursive defining equations. In fact the recursive definitions we originally
obtained by just such transformations.

Proof (Tc.Tp): by Mree-induction. Assume x ranges over Ntree. Then

if(lnz(x),0,/(Tp(x)))

S if (if (Atom(x), Zerop(x), or(lnz(Car(x)), lnz(Cdr(x)))), » dfn Inz

0,

/(Tp(*)))

= if(AtomOn), .. (tta)

if(Zerop(x),0,/(Tp(a:))),

if(or(lnz(Car(x)), lnz(Cdr(x))), 0, /(Tp(x))))

- if(Atom(x), .. dfn Tp> (if.subst)

if(Zerop(x),0,/(x)),

if(or(lnz(Car(x)),lnz(Cdr(x))),

0,

/(*[Tp(Car(x)),Tp(Cdr(x))])))

Sjf(Atom(*), ;;(if.or)

if(Zerop(x),0,/(x)),

if(lnz(Car(x)),

0,

if(lnz(Cdr(x)),

0,

/(*[Tp(Car(x)),Tp(Cdr(x))]))))

§6 Proving properties 63

£ if(Atom(ar), » (letv)

if(Zerop(x),0,/(x)), ;; (Tp.sort)

if(lnz(Car(x)),

0,

if(lnz(Cdr(x)),

0,

{A(z)/(*[TP(Car(x)),z])}Tp(Cdr(x)))))

£ if (Atom(x),

if(Zerop(x),0,/(x)),

if(lnz(Car(x)),

0,

Jc(Cdr(x), A(z)/(*[Tp(Car(x)), z]))))
;; induction hypothesis

£ if(Atom(x), ;; (letv)

if(Zerop(x),0,/(x)), ;; (Tp.sort)

if(lnz(Car(x));

0,

{A(y)Tc(Cdr(x), \z.f(*[y, z]))}Tp(Car(x))))

S if(Atom(x), ;; dfns Ta, Td

if(Zerop(x),0,/(x)),

if(lnz(Car(x)),

0,

Ta(x,/)(Tp(Car(x)))))

£ if(Atom(x), if(Zerop(x), 0, /(*)), Tc(Car(x), Ta(x, /)))

;; induction hypothesis

£Tc(x,/) ;;dfnTc

^C.Tp

Proof (Ts.Tp): by iVtree-induction. Assume x ranges over Ntree and c ranges
over Co. Then

if(lnz(x),c(0),Tp(x))

64 §6

- «f(Atom(x), .. ^ in proof of (Tc.Tp)

if(Zerop(x),c(0),x)

if(lnz(Car(x)),

c(0),

if(lnz(Cdr(x)),

*[Tp(Car(x)),Tp(Cdr(x))])))

S if(Atom(x), .. (esc)

if(Zerop(x),c(0),x),

if(lnz(Car(x)),

c(0),

if(lnz(Cdr(x)),

*[Tp(Car(x)),c(0)],

*[Tp(Car(x)),Tp(Cdr(x))])))

= *(Atom(x), ;;(if.dist)

if(Zerop(x),c(0),x)

if(lnz(Car(x)),

c(0),

*[Tp(Car(x)), if (lnz(Cdr(x)), c(0), Tp(Cdr(x)))]))

- 'f(Atom(x), ;; induction hypothesis
if(Zerop(x),c(0),x),

if(lnz(Car(x)),

c(0),

*[Tp(Car(x)),Ts(Cdr(x),c)]))

S if(Atom(x), .. (egc)f (ifdist)

if(Zerop(x),c(0),x), ;; as above

*[if (lnz(Car(x)), c(0), Tp(Car(x))), Ts(Cdr(x), c)])

- lf(Atom(x), .. induction hypothesis

if(Zerop(x),c(0),x),

*[Ts(Car(x),c),Ts(Cdr(x),C)])

= Ts(x, c) ;; dfn Ts

^s.Tp

§6 Proving properties 65

6.4. Streams and coroutines.

Streams and coroutines are mechanisms for generating elements of a sequence
as they are needed. They can be characterized extensionally by the sequences they
generate. For simplicity we will concentrate on infinite sequences (thus avoiding
the need to consider the case of the empty stream).

6.4.1. Streams

Recall that in 1Zum, streams are represented by pfhs which when queried
(applied to the empty sequence) return a pfn representing the rest of the stream
together with the next element of the stream. We begin by formalizing the notion
of sequence generated by a stream.

Definition (Streams generating sequences.): Let a be an infinite sequence
of elements from the computation domain (a € [N —► V]). A pfn 5 is a stream
generating a if there is a sequence of pfns i9(j) such that 5 = tf(0) and i?(;)(mt) =
[d(j + l),a(j)] for all j € N. We say that ü is the sequence of tails of s, ■d(j) is
the j-th tail of s, and cr(j) is the j-th. element of s.

Note that if 5 is a stream generating a with sequence of tails ti then d(j) is a
stream generating Xn.a{n + j) with sequence of tails An.i9(n + j) for each j € N.

We will use this characterization of streams to formulate and prove the cor-
rectness of the pfn Sieve discussed in §2. Recall that Sieve is defined by

> Sieve(mt) <- Sift(lnts(2))(mt)

> lnts(n)(mt) <- [lnts(n + l),n]

> Filter(p,m)(mt) <- let{[n,in]-«-m(mt)}

if (Divp(p, n), Filter(p, m)(mt), [Filter(p, in), n])

> Sift(tn)(mt) <- let{[m,p]-em(mt)}[Sift(Filter(p,m)),p]

where for numbers p, n the expression Divp(p, n) is true iff p divides n. Let Primes
be the sequence of prime numbers listed in increasing order. The correctness of
Sieve is expressed as follows.

■(Correctness of Sieve.) Sieve generates Primes.

Proof (Correctness of Sieve.): Since Sieve £ Sift(lnts(2)), to prove the cor-
rectness of Sieve we need only define sequences giving the elements and tails of
Sift(lnts(2)) and verify that the elements sequence is indeed Primes.

We begin by defining some number-theoretic functions. These definitions
can easily be transformed into pfn definitions. We leave them in the world of
mathematics to separate the work which is purely number theory from that which

66 §6

deals with pfns. In the following i,j,k,m,n will range over N, a will range over
sequences of numbers - a € [N -► N], and m | n is the predicate "m divides n".
Define the functions Ix, Index, and cr^^ for each m € N by

Ix(a,m,j) = fi{k > j}->(m | a(k))

Index(<T, m, 0) = Ix(a, m, 0)

Index((r, m, n + 1) = Jx(<7, m, Index(cr, m, n) + 1)

(T^m>(A:) = (T(Jn<iex(<T,m,Jk))

Thus Ix(a, mj) is the least number k such that Jfc > j and m does not divide cr(k).
Index(a,m,j) is the number k such that m does not divide *(*) and such that
there are exactly j elements <r(i) with i < k and m not dividing <r(i). «r^""") is the
subsequence of elements of <7 not divisible by m. We will only apply these functions
in situations where a is a sequence with infinitely many elements not divisible by
m so we need not specify their behavior elsewhere. Define the sequences Pint(n)
and Pr by V J

Pint(0) = X(i)i + 2

Pint(n + 1) = Pmi(n)(nPr(n»

Pr(j) = Pint(j,0)

Then Pint(n) is the sequence of numbers not divisible by Pr(j) for all j < n,
Pr(0) = 2, and Pr(j) is the j-th prime. Note also that there are infinitely many
elements of Pint(n) not divisible by Pr(n).2 Thus to prove the correctness of
Sieve we need only find a sequence of pfns tf(j) such that 0(0) £ Sift(lnts(2)) and
j9(n)(mt) £ [0(n + 1), Pr(n)]. Define the sequence of pfns P(n) by

> P(n) *- if (Zerop(n), lnts(2), \et{[s, m] -e P(n - l)}Filter(m, P(n - 1))

Lemma (P.Pint): For all n, P{n) is a stream generating Pint(n).

The correctness of Sieve now follows from the lemma (Sift.sifts).

Lemma (Sift.sifts): Sift(lnts(2)) is a stream generating Pr with j-th tail
Sift(P(j)).

Proof (Sift.sifts): We must show Sift(P(j))(mt) S [Sift(P(j + 1)), Pr(j)]. By
(P.Pint) there is a stream s such that P(j)(mt) £ [s,Pr(j)\ and by the definition

" These two sentences are where the main number-theoretic work is hidden.

§6 Proving properties 67

of Filter we have Filter(Pr(j),P(j)) = F\her(Pr(j),s). Hence by the definition of
Sift and P we have

Sift(P(j))(mt) & [Sift(Filter(Pr(;), P(j))),Pr(j)] & [Sift(P(j + l)),Pr(j)]

DSift.sifts

All that remains is to prove (P.Pint). We first prove some lemmas about Ints
and Filter.

Lemma (Ints.num): lnts(i) generates the sequence A(n)n + i, the sequence of
numbers greater than or equal to i.

Proof (Ints.num): The ;-th tail of Ints(t) is lnts(i + j). G|nts.num

Lemma (Filter.fil): Let a be a sequence with infinitely many elements not
divisible by m and let in(i) be the sequence of tails of a stream generating a.

Filter(rn,m(z'))(mt) = [Filter(m, in(Ix(cr, m, i) + l)),a(Ix{a, m,i))]

Proof (Filter.fil): by induction onfc = Ix(a,m,i) — i

Case (k = 0): Divp(m,(r(i)) is false and by definition of Filter

Filter(m,in(i'))(mt) ^ [Filter(m,m(i + l)),a(i)]

Case (k > 0): : Then Divp(m,cr(i)) is true and by definition of Filter and induc-
tion hypothesis

Filter(m,m(z'))(mt) £ Filter(m, in(i + l))(mt)

= [Filter(m, in(Ix(a,m,i) + l)),a(Ix(a,m,i))]

^Filter.fil

Lemma (Filter.filters): Let a be a sequence with infinitely many elements not
divisible by m and let s be a stream generating a with sequence of tails in. Then
Filter(m,.s) is a stream generating a^m^ with sequence of tails out where

otti(O) = Filter(m,s)

out(j + 1) = F\\ter(m,in(Index(cr,m,j) + 1)))

Proof (Filter.filters): We must show for each j

out(j)^[out(j + l),a^m\j)}.

16

This follows easily from (Filter.fll) and the properties of Index, and <r^m) given
above.

Case (j =0): Let k = Ix(a, m, 0) then

Index(cr, m, 0) = k ;; defn Index

^m\0) = a(k) .. defn ^(m)

ou*(0)(mt) 2 Filter(m, m(0))(mt) 3 [Filter(m, in(*+l)), <r(*)] ;; (Filter.fll)

Case (; + 1): Let fc = Ix(<r,m,Jn<fex(c7,m,;) + 1) then

Index(a, m, j + 1) = k ;; defn Index

*<-»>(; + 1) = «rCfc) .. defn ^w)

ou*(i + l)(rnt) £ Filter(m,tn(7ndez(<r,m,;) + l))(mt)

S [Filter(m, tn(Ä: + 1)), cr(k)] ;; (Filter.fll)

DFilter.filters

Now we are ready to prove the Pint lemma.

Proof (P.Pint): by induction on n. The case n = 0 is by (Ints.ints). For
n> 0, assume P(n - 1) is a stream generating Pint(n - 1). By (Filter.filters) and
the definitions of Pint, Pr we have P(n) & Filter(Pr(n - 1), P(n - 1)) is a stream
generating Ptnt(n). Dp.pint

This completes the proof of correctness of Sieve. öCorrectness of Sjeve#

6.4.2. Coroutines

The next element of the sequence generated by a a coroutine is obtained by
resuming the coroutine. The coroutine computes the next element and resumes
its resumer with the value of the next element in a context that represents the
remainder of the computation.

To formalize the notion of coroutine and of sequence generated by a coroutine
we begin with the resumption pfn Resume. Resume notes the current context
discards it (by applying top), and calls the resumee with the noted context and
possibly additional information as argument.

> Resume[p,u] «- note(c)top(p[c,ü])

Resumption is used with no additional arguments to get the next element from
a coroutine generating a sequence. It is also used by the generating coroutine to

§6 Proving properties 69

return the element to its resumer. Thus it is common for resumption of a generator
coroutine g by a consumer c, to reduce to resumption of c with the next element x
in a context g' representing the remainder of the generator computation. In this
case resumption of g is equivalent to [top o g',x]. This property of co-operating
pairs of resumptions is expressed by the following theorem.

Theorem (res.res):

Resume(Ax.p(Resume[a;,2:])) = [top op,z]

Proof (res.res):

Resume(Ax.p(Resume[x,2])) =

= note(co)top((A:r.p(Resume[x,z]))(co)) ;; dfn Resume

= note(co)top(p(Resume[c0,z])) ;; (letv)

= note(co)top(p(note(ci)c0[ci,z])) ;; dfn Resume

= note(c0)note(ci)top(p(c0[ci o (top o p), z])) ;; (note.dist)

= note(c0)note(ci)c0 [top o p, z] ;; (esc.c) twice

= note(co)c0[top o p, z] •; (note.triv)

= [top o p, z] ;; (note.id)

Now we can formalize the notion of coroutine generating a sequence.

Definition (Coroutines generating sequences.): Let a be an infinite se-
quence of elements from the computation domain, co is a coroutine generating a
if there is a sequence of pfns d(j) such that $(0) = co and for all ; € N

Resume(tf(j)) 2 [top o ti(j + 1), <r(j)].

We say that $ is the sequence of tails of co, fl(j) is the j-th. tail of co, and a(j) is
the j-th element of co.

We will now use the resumption theorem and this characterization of corou-
tines to formulate and prove the correctness of the string-transforming pfn C32.
Recall from §2 that C32 and its auxiliaries C32a, C32b, C32c, C32d satisfy

§6

■(C32.aux)

C32(in)[out] £ C32a(ou*)(Resume(m))

C32a(ou*)[m, w] £ let{[x0,xi, x2] -e StrUn(u>)}

C32b(m, x2)(Resume[oui, StrMk[x0, xi]])

C32b(m, x2)[ou<] £ C32c(ou*,ar2)(Resume(m))

C32c(out,z2)[m,te] = !et{[x3,x4,x5]+ Strlln(u;)}

C32d(m, x4, x5)(Resume[ou*, StrMk[x2, x3]])

C32d(m,x4,x5)[ou*] £ C32(m)(Resume[oui,StrMk[x4,x5]])

Theorem (C32.correctness): Let x be a sequence of characters, let x
(3) be

the sequence of strings of length three such that

X(3)(0 = StrMk[x(30,x(3* + l),x(3t + 2)],

and let x(2) be the sequence of strings of length two such that

X(2)(0 = StrMk[x(2i),x(2* + l)]

Then for any coroutine co generating X
(3), C32(co) is a coroutine generating x{2}-

Proof (C32.correctness): Let X, X(3), X(2) be as in the statement of the
theorem and let co be a coroutine generating x(3) with tails in(j) for j € N. We
want to show that there is a sequence of pfns out(j) such that C32(co) £ out(0)
and Resume(out(j)) = [topoout(j +1), x(2)(j)]. for j € N. Define out(j) as follows:

out(3j) S C32(m(2j))

out(3j + 1) s C32b(m(2; + l),x(6j + 2))

out(3j + 2) 3 C32d(m(2j + 2), x(6; + 4), x(6j + 5))

Thus we need only prove the following three equations

(out.i) Resume(C32(in(2j))) 3 [top o C32b(m(2j + l),x(6j + 2)),x
(2)(3j)]

(out.ii) Resume(C32b(m(2; + 1), x(6; + 2)))

S [top o C32d(m(2j + 2), x(6j + 4), X(6; + 5)), X
(2)(3j + l)]

(out.iii) Resume(C32d(m(2j + 2), x(6; + 4), x(6j + 5)))

^[topoC32(m(2;+2)),x
(2)(3;+2)]

§6 Proving properties 71

We will use the following simple facts which follow easily from the definition of
Resume and (C32.aux).

(res.top) Resume(p) = Resume(top op)

(in.top) C32(m) 2 C32(top o in)

(in.top.b) C32b(in, x) £ C32b(top o in, x)

(in.top.d) C32d(m, x, y) £ C32d(top o in, x, y)

Let x, X(,) be as in the statement of the theorem and assume in(j) is a sequence
of tails of a co-routing generating x^- Thus we have

(in.hyp) Resume(m(j)) £ [top o in(j + 1),x3(j)]

Proof (out.i):

Resume(C32(m(2j))) £

= Resume(Aout.C32a(out)(Resume(m(2j)))) » (C32.aux)

S Resume(Amxi.C32a(ou<)[top o in(2j + 1), x(3)(2;')]) ;; (hyp.in)

3£ Resume(Aou*.C32b(in(2j + l),x(6j + 2))(Resume[out,x(2)(3j)]))

;; (C32.aux),(in.top.b), defn x(,)

* [top o C32b(m(2j + 1), x(6; + 2)), x(2)(3;)] ;; (res.res)

Dout.i

Proof (out.ii):

Resume(C32b(m(2j + 1), X(6j + 2)))

S Resume(Aout.C32c(ou«,x(6i+2))(Resume(m(2j+l)))) ;; (C32.aux)

3S Resume(Aoui.C32c(out, x(6j + 2))[top o in(2j + 2), x(3)(2j + 1)]))

;; (hyp.in)

= Resume(Aoui.C32d(m(2i + 2), x(6j +4), z5)(Resume[out, x(2)(3j +1)]))

;; (C32.aux),(in.top.d), defn x
(i)

= [topoC32d(m(2;+2),x(6j+4),x(6i + 5)),x(2)(3i + l)] ;; (res.res)

Dout.ii

72 §6

Proof (out.iii):

Resume(C32d(m(2j + 2), X(6j + 4), X(6j + 5)))

S Resume(Aout.C32(m(2j + 2))(Resume[out,X
(2)(3; + 2)]))

;; (C32.aux), defn x(,)

= [top o C32(m(2j + 2)), X
(2)(3j + 2)] ;; (res.res)

Dout.iii nC32.correctness

6.4.3. Remarks

We have formalized useful but particularly simple notions of stream and corou-
tine. It is easy to see that pfns can represent much more complex stream-like ob-
jects and more intricate patterns of coroutine interaction. We refer the reader to
the Common Lisp manual [Steele 1984] for more elaborate notions of stream and
to [Kahn and McQueen 1977] for a more general notion of systems of coroutines.

§" Derived properties and programs 73

7. Derived properties and programs

A set of derived properties is a uniformly computable set of properties of
computations described by programs. By uniformly computable we mean com-
puted by a scheme for recursion on the structure of computations. For example
simple derived properties are computed by composing a sequence of parameter
functions corresponding to the rules used in generating a computation sequence
and applying this composition to an initial value. Many more elaborate schemes
are possible. A derivation map converts programs into derived programs that
compute derived properties of the original program. The uniformity requirement
for derived properties means that derivation maps are computable operations on
programs determined by the recursion schemes. The value of derivation maps is
that they convert intensional properties of programs into extensional properties
of derived programs. This allows us to apply methods for proving properties of
the function computed by a program to proving properties of the computations
described. The term "derived program" is due to McCarthy (private communi-
cation) and derived programs are related to work of [Wegbreit 1975]. The idea
of derived property is a special case of non-standard interpretation in which we
reinterpret program primitives to compute some property of the computation de-
scribed the standard interpretation. Some forms of abstract interpretation (cf.
[Cousot et Cousot 77], [Jones and Mycroft 86], [Abramsky and Hankin 87]) can
also be expressed as derived properties.

To illustrate the basic ideas we will focus on simple derived properties, hence-
forth known as s.d.p.s. We begin with some examples of simple derived properties.
Then we formally define the set of s.d.p.s and give some properties of this set.
Finally we define a derivation map for s.d.p.s and use it to analyze intensional
properties of the tree product pfhs. To simplify matters we will assume that we
are working over a data structure that contains the S-expression structure.

7.1. Examples of simple derived properties

Two examples of s.d.p.s are count(O) for a set of rules O and trace. count(O)
is the number of times one of the rules in O is applied in generating a computation
sequence and trace is the list of (codes for) the rules applied. Returning to the
example computation sequence Eex (which we repeat here in Figure S for the
reader's convenience) we have

couni({Atom}, Eex) = 0, coimi({Zerop}, Eex) = 1, count({sw}, £ex) = 1,

and

trace(Hex) = <if, app, sym, appi, sym, Zerop, ifi, app, sym, appi, syrri, sw>.

§7

7 * (if(Zerop(x),c(x),x) : £)

>-* 7 o (ifi(c(x),x) : 0 ^ (Zerop(x) : () (if)

^7° (ifl(c(x), x) : 0 o (appi(x) : £} v (Zerop : 0 (app)

7 o (ifi(c(x), x) : 0 o (appi(x) : £) A Zerop (sym)

7 o (ifl(c(x), i):()o appc(Zerop) v {x : f) (appi)

>—•• 7o (if'(c(*)>i):0° appc(Zerop) A O (sym)
7o(ifi(c(x),x) :OA0 (Zerop)
7 v (c(x) : £) (ifj)

7o(appi(x):0v(c:0 (app)

>-♦ 7 o (appi(x) : £) A top (sym)
7oappc(top)v (x :£) (appi)

7oappc(top) AO (sym)
top A o (SW)

where f maps x to 0 and c to top

Figure 8. Example computation sequence

where if, app, etc. denote S-expressions coding the symbols if, app, etc.

7.2. Definition of simple derived property

An s.d.p. is defined by giving an initial value and a set of unary functions
(primitive derivations), one for each computation rule. Given a set of primitive
derivations we define the derived property function for a computation sequence to
be the composition of the primitive derivations corresponding to the rules used in
generating the sequence. The derived property of a given computation sequence
is then computed by applying its derived property function to the initial value.
The use of derived property functions allows segments of a computation sequence
to be treated independently. For a segment contained in a larger sequence the
initial value is interpreted as the derived property for the computation up to the
beginning of the segment. Applying the derived property function for the segment
to this value produces the derived property for the computation continued to the
end of the segment.

Derived properties and programs 75

> (Simple derived properties.): Let Rules be the set of (S-expression codes
for) the computation rules

Rules = {sym, mt, top, lam, note, if, ifi, app, appi,

cart, carti, carte, fst,fstc,rst,rstc, pfn,sw, o\o € 0D).

Let A be a subset of V and let D be a pfn mapping Rules to pfhs computing unary
functions on A.

D € [Rules -* A -* A]

We call D a primitive derivation over A and D(f) is the primitive derivation cor-

responding to r for each f € Rules. If E is the computation sequence [(0
n

rt
Ck]- then E , the derived function of E determined by D, is the compo-

sition D(r*) o ... o D(fi). The s.d.p. of E determined by a € A and D is ED(a).

Lemma (count.sdp): count is an s.d.p.

Proof (count.sdp): Let O be a set of rules and let D be the primitive derivation
over the integers defined by

p.,^ / Addl if r € 0

Then couni(0,E) = ED(0) and thus count(O) is the s.d.p. determined by D and

"' '-'count.sdp

Lemma (trace.sdp): trace is an s.d.p.s.

Proof (trace.sdp): Let D be the primitive derivation over lists of integers
defined by

D = Ar.A<f.Append(<f, ListMk(r))

Then irace(E) = ED(Nil) and thus trace is the s.d.p. determined by D and Nil.

'-'trace.sdp

Theorem (trace.universal): The trace of a computation sequence contains all
the information about the computation sequence available for computing s.d.p.s.
In particular, there is a pfn Derive such that for any A C V, any a € A, and any
primitive derivation D over A

Derive(D,a,trace(E)) = ED(a)

Proof (trace.universal): Take Derive(D, a, x) = Sit(D, a, ListUn(x)) and show
by induction on length of E that the specification for Derive is satisfied.

'-'trace.universal

§7

When computations are denned by recursion and carried out on a stack-based
machine, an important property is the maximum stack depth required in a compu-
tation. In a continuation-based model, the analog to stack depth is continuation
depth - the length or number of compositions in the continuation. For example
the depth of top is zero and the depth of 7 o appc(u) is one plus the depth of 7.

Lemma (max.stack): For computations that do not involve context switching
the maximum stack depth is a derived property.

Proof (max.stack): Let D be the primitive derivation over pairs of integers
norino/H Ktr defined bv

D(r)

' Ax.let{m -«- Addl(Car(x))}Cons[m, Max[m, Cdr(x)]]
if r € {if,app,cart,fst,rst}

Ax.Cons[Subl(Car(x)), Cdr(x)]
if r € {ifi, carte,fstc, rstc, pfn,o|o€ 0D}

I otherwise

where Max[:r, y] is the maximum of x and y for integers x, y. If sw is not used in £
and m is the length of the continuation component of 1st (£) then by induction on
the length of £ we see that Car(SD(Cons[m,m])) is the length of the continuation
component of the last state in S and Cdr(ED(Cons[m, m])) is the maximum of the
continuation lengths for states occurring in E. Omax stack

Corollary (no.max.stack): Maximum stack depth is not an s.d.p. for arbi-
trary computations.

Proof (no.max.stack): This follows from the universality of trace and the
fact that maximum continuation length is not computable from the trace. To see
the latter, note that <sw> is the trace of computation sequences with arbitrarily
long continuations. üno<max#stack

7.3. Derived programs

Rather than use derived properties directly to treat intensional properties
of programs, we will define a derivation map and show how this can be used to
convert intensional properties of programs into extensional properties of derived
programs.

Definition (Derivation map): Let ds be a new symbol. A derivation map is
a family of functions A on Hum domains

A e [F - F] © [F« -> F] 8 [Co -» Co] © [V* - V] © [Bt x V -H. tot] 0 [St x V - St]

Derived properties and programs 77

such that (writing x f°r A(x) to emphasize the dependence on the primitive
derivation D)

dD=d

o = \[ds,x][D(o, ds),o(x)]

((Ax.^:0€V)D = (A[d5,x](V?
D):^D)

(7 e V)D = (A[<fs,x]c[D(sw,<fs),x] : c + 7
D)

[ai,...,an]D = [a!D,...,a„D] .

(<p:0D(a) = (<pD :ZD{ds + a})

£ (x) = (£(x)) ;; for any variable x in the domain of f

top = top

(7 o (^cS : 0)° = 7° o ((^cs € Fc3)D : eD))

(7-<5)D(a)=7
Dv(<5D(a))

(7 A u)D(a) = 7D A [a,vD]

and

Co Ä Ci =* CoD(a) X- CiD(SD(a))

Here as in other situations where one is defining a family of functions on Thim
domains it is necessary to distinguish between (Ax.<^> : f) the dtree and (\x.(p : £)
the pfn. To make this distinction we write (Ax.9? : £) € V for the pfn. For
continuations we write 7 € V for 7 as an element of the computation domain and
simply 7 as a component of a computation state. We write </? € F« when we are
viewing 9 as a continuation segment form rather that simply as a form.

The key fact about derivation maps is that derived pfns compute derived
property functions. This is expressed by the theorem (der.map).

Theorem (der.map): For any A C V, D a primitive derivation over A and

p(v) € V* =* ht(pD[a,vD)) * Cs(p(v))D(a).

Note. An important property of Hum computation is that if p(v) € V* then for
E

any continuation 7 there is a value u and a computation sequence E 7 v p[v) >—►
7 A u and TP is independent of the choice of 7. Endnote.

For the remainder of this section we assume that D is a constant symbol whose
interpretation is a primitive derivation and that the new symbol ds ranges over V.

§7

Theorem (dermap.exists): There exists a family of functions A that is a
derivation map.

Proof (dermap.exists): From the definition it is easy to see that a derivation
map is determined by its action on forms and continuation segments. Figure 9
defines such an action. The theory would be a little simpler if we worked in
basic Ihim with no constant symbols. However the practice is much simpler if we
develop the theory accounting for the distinction between constant and variable
symbols. Thus for each constant symbol s we choose a new constant symbol s'
(the derived symbol associated with s) whose interpretation is the derivation of
the interpretation of s. For variable symbols we take s' to be s. To check that the
map defined by Figure 9 is indeed a derivation map one only needs to check the
step requirement for each step rule. We leave this as an exercise. In fact the action
of the derivation map on forms was obtained by looking at what was needed to
prove the step requirement. Odermap.exists

To facilitate working with derived programs we have a number of lemmas for
common special cases. To simplify matters we will assume in the remainder of
this section that D is a primitive derivation over the integers for counting data
operations. Thus for r € Rules

D(r)j €{l,Addl} ifr = oforo€0D

I — I otherwise.

The general case is similar, just messier. Under these assumptions we have the
following facts about the derivation map.

Lemma (dop.der): For data operations o

(app) (v>0(^i))D 3 let{[ds,/.]-e¥»oD}let{[ds,x.]-«-ViD}/.[d5,^]

(cart) [<A),?i]D ZteildSiXj + ip^yetids^ + tp^ldSiX^y.]

(s.app) (s(<p))D3£s'(<pD)

(o.app) o(xf 3 [D(o, da), o(x)} .. 0 € 0D

(if.dop) D(3) = I =► if(o(x)l¥>1, V2)
D = if(°0O,¥>iD,V2D)

Proof (dop.der): The proofs are essentially computation using the definition
of the derivation map A, the simplifying assumptions (letv), (let.perm) and the
cart laws. Ddop#der

The key to computing derived properties of recursivelv defined pfns is the de-
rived recursion lemma (der.rec) and its corollaries. The derived recursion lemma
says that the derivation of a pfn defined by a recursion equation is a pfn defined by

Derived properties and programs 79

sD = [D(sym, ds), s]

mtD = [D(mt,«fe),mt]

topD = [D(top,ds),\[ds,x]top[D(sw,ds),x]]

(\x.<p)D = [D(\am,ds),\[ds,x]<pD]

(^(^i))D = let{d^D(app,^)}(appi(^1)
D)(¥?o

D)

appi(v?1)
D=A[^,/.]let{cf5^D(a7pi,d3)}(appc(/.)D)(^iD)

appc(/.)D = \[ds,x,]f,[D(awc,ds),xt]

lf(vo,9i,Va)D = let{d^D(if,^)}(ifi(v>i,V»2)D)(voD)

ifi(<^i,<?2)
D = A[d5,x.]let{d5-(-D(ifi,d5)}if(:r.,¥?1

D,^2
D)

[w,w]D = \et{ds + D(c£rt,ds)}(c<irt\{<p1)
D)(<poD)

carti(v>i)D =X[ds,x.]\et{ds + D(cari\,ds)}(cartc(x.)D)(<f1
D)

cartc(x.)D = A[<fc,y.].[D(cartc,ds),x.,y.]

fst(y>)D = let{da-(. D(fst,<k)}fstcD(<?D)

fstcD = A[rfa,x.].[D(fttc,da),fst(*.)3

rst(<p)D = let{<fs + D(rst,<f5)}rstcD(vjD)

rstcD = A[ds,x.].[D(rstc,<fs),rst(x.)]

(note(c)y>)D = note(c)let{c + X[ds,x.].c[D(sw,ds), x.]}\et{ds -s- D(note, ds)}<pD

where /., x,, y. are chosen fresh

Figure 9. Derivation map action on forms

a corresponding derived recursion equation. The corollaries extend this to multiary
pfns.

Lemma (der.rec): Let F be a constant symbol defined by

F(x) <- <p

then the derivation F' of F is defined (mod =) by

F'[ds,x] <- 9D

80 §7

Corollary (der.rec.l): If G is a constant symbol denned by

G(xi,x2) <— (f

then the derivation G' of G is defined (mod =) by

G'[ds,x] <- [<fe,Gi(x)]

Gx(xi)[ds,x2] «- (,3
D

Corollary (der.rec.2): For G, G', Gj as in (der.rec.l)

G(ifu<fi2)
D = \^{[ds,x1]^<pl

D]}\et{[ds,x2)^^2
D}G1(x1)[ds,x2]

Again the proofs are just straightforward (but tedious) computations simplified
somewhat by (dop.der). As an example we prove (der.rec.2).

Proof (der.rec.2):

G(<^l,V?2)D

^\^{[ds,9}^\et{[dsux1]^^1
D}G'{dsl,x1}}-

\et{[ds,x2]+<p2
D}

g[ds,x2]
;; using (dop.der.s.app), recall G^r,^) abbreviates (G(<pi))(<p2)

= \et{[ds,g]^\et{[ds1,x1}^<fl
D}[dsuG1(x1)}} -(der.rec.l)

\et{[ds,x2]-t-<p2
D}

g[ds,x2]

-'^{[^i^il-f-Vi0} ;; (let.perm)
\et{[ds,g]^[dSl,G1(x1)}}

\et{[ds,x2]+<p2
D}

g[ds,x2]

S \et{[ds,x1]^<fl
D}\et{[ds,x2}^(f2

D}G1(x1)[ds,x2] ;; (letv)

nder.rec.2

7.4. Analysis of tree product computations.

To see how derived properties and programs can be used to analyze inten-
sional properties of programs, we return to the tree product computations. In the
following we assume 0 is a subset of {Car, Cdr, *} and D is the primitive derivation
sequence defining count(O).

§~ Derived properties and programs 81

7.4.1. Analysis of the recursive tree product pfn

We begin with the simple recursive pfn Tp. Recall

> Tp(x) «- if(Atom(x),x,*[Tp(Car(x)),Tp(Cdr(x))])

To analyze properties of Tp we define the pfns Cells and Nodes where for number
trees x, Cells(x) is the number of conses used to construct x, and Nodes(x) is the
number of nodes excluding the root.

> Cells(x) <- if(Atom(x), 0,1 + Cells(Car(x)) + Cells(Cdr(x)))

> Nodes(x) <- if(Atom(x), 0,2 + Nodes(Car(x)) + Nodes(Cdr(x)))

The facts about the computation of Tp given in §2 are formalized by the theorem
(Tp.cnt).1

Theorem (Tp.cnt):

(mult) count({*}, Tp(x)) =* Cells(x)

(ad) cot/nt({Car,Cdr},Tp(x))^IModes(x)

Proof (Tp.cnt): Define

> TpCnt(x) «- fst(Tp'[0,x])

then by the derivation theorem we need only show

O = {Car,Cdr} =» TpCnt(x) £ Nodes(x)

O = {*} =► TpCnt(x) S Cells(x)

This is follows by an easy induction on number trees from the lemma (tpcnt).

^Tp.cnt

Lemma (tpcnt):

TpCnt(x) £ if(Atom(x), 0, Dcnt(TpCnt(Car(x))) + TpCnt(Cdr(x)))

where

> Dcnt(x) «- D(*,D(Cdr,(D(Car,x))))

Note that the expression Tp(i) denotes a dtree in expressions such as count({*}, Tp(x)).

82 §7

To prove (tpcnt) we first prove two lemmas about the derivation Tp' of Tp.

Lemma (tpd.eq):

Tp'[ds,x] £ if(Atom(x),

[ds,x],

\et{[ds, xa] + Tp'[D(Car, ds), Car(x)]}

\et{[ds,xd] + Tp'[D(Gh,ds),Cdr(x)]}

[D(*,ds),*[xa,xd]])

Lemma (tpd.sum):

Tp'[dS,x}^\et{{d,y] + Tp'[0,x}}[ds + d,y}

Proof (tpd.eq): By assumption we have D(r) = I for r in Rules - {Car, Cdr *)
Thus . l ;'

(l.a) Car(x)D 3 [D(Ca7,<fc), Car(x)] ;; (dop.der.o.app)

(l.b) Cdr(x)D 2 [D(Cdr», Cdr(x)] ;; (dop.der.o.app)

(l.c) *bo,Vi]D = \et{[ds,xa] + <poD}\et{[ds,xd} + y,1
D}[D(*,ds),*[xa,xd}}

;; (dop.der.cart), (dop.der.s.app), defn *'

(l.d) Tp(Car(x))D * Tp'[D(Ca7, da), Car(x)] ;; (dop.der.s.app), (l.a)

(l.e) Tp(Cdr(x))D 2 Tp'[D(CTr,<fc), Cdr(x)] ;; (dop.der.s.app), (l.b)

(l.f) *[Tp(Car(x)), Tp(Cdr(x))]D £ kt{[ds, xa] + Tp'[D(Ca7, ds), Car(x)]}

\tt{[ds, xd) + Tp'[D(Cd>, ds), Cdr(x)]}

;; (l-c,d,e)

§7 Derived properties and programs 83

(l.g) Tp'{ds, x] 3 if (Atom(x), [ds, x], *[Tp(Car(x)), Tp(Cdr(x))]D)

;; (der.rec) applied to Tp

S if (Atom(x),

[ds,x],

let{[da,zB]^Tp'[D(Car,ds),Car(a:)]}

let{[ds, xd] + Tp'[D(Cdr, ds), Cdr(x)]}

[D{*,ds),*[xa,xd]])

;; (if.op), (l.f)

tpd.eq
Proof (tpd.sum): by induction on number trees

Case (Atom(x)):

Tp'[ds,x] = [ds,x] ;; (tpd.eq)

= let{[d,y] -+[Q,x]}[ds + d,y}) » (letv) and arithmetic

*Met{[d,y] + Tp'[0,x]}[d5 + d,y]) ;; (tpd.eq)

Case (->Atom(x)):

Tp'[ds,x] £ let{[da,xx]-eTp'[D(Car,ds),Car(x)]}

let{[ds,yy] + Tp'[D(Cdr,ds),Cdr(x)]}

[D(*, da), *[xx, yy}]) ;; (tpd.eq)

S let{[ds,xx] -«- let{[da,xa] +Tp'[0,Car(x)]}[D(Ca7,ds) + da,xa]}

let{[d$, xx] -e let{[dd, xd] + Tp'[0, Cdr(x)]}[D(Cdr, da) + drf, xrf]}

[D(*,ds), *[xx,yy]]) ;; induction hypothesis

^let{[da,xa]-eTp'[0,Car(x)]}iet{[d5,xx]-e[D(Ca7,d5) + da,xa]}

let{[dd,xd]^Tp'[0,Cdr(x)]}let{[d5,yy]^[D(Cd7,d5) + dd,xd]}

[D(*, ds), *[xx, yy}]) ;; let.perm

^let{[da,xa]-eTp'[0,Car(x)]}

\et{[dd,xd] + Tp'[0,Cdr(x)]}

[ds + Dcnt(da + dd),*[xQ,ya]])

;; (letv), defn Dent, arithmetic

84 §7

and

*{[d,y]+Tp'[0,x]}[ds + d,y]

= \et{[d,y} +

let {[do, a:*] -e Tp'[D(Ca7, 0), Car(z)]}

let{[do,yy]^Tp'[D(Cd~r,<f0),Cdr(x)]}

[D(*,<f0),*[:rx,yy]]}

[ds + d,y] ;; (tpd.eq)

= let{[d0, xx] -e Tp'[D(Car, 0), Car(x)]}

let{[d0,yy]^Tp'[D(Cd^,<fo),Cdr(x)]}

[da + D(*, d0), *[xx, yy]] » (let.perm,letv)

^let{[<fo,xa;]^let{[cfa,xa]^Tp'[0,Car(x)]}[D(C^,0) + (fa,xa]}
let{Mo,yy]^let{[^,z<£]-eTp'[0,Cdr(a:)]}[D(Cd?,cfo) + d(f,ard]}

[<fs + D(*, d0), *[xx, yy]] » induction hypothesis

= let{[dfl,xB]-eTp'[0,Car(x)]}

let{[<fd,xd]+Tp'[0,Cdr(:r)]}

[^ + Dcnt(da+dd),*[xfl,xd]]

;; (let.perm,letv), defn Dent, arithmetic

^pd sum

§7 Derived properties and programs 85

Proof (tpcnt): This is an easy induction on number trees.

TpCnt(x) = if (Atom(x),

fst[0,x],

fst(let{[ds, xx] -e Tp'[D(Car, 0), Car(x)]}

let{[ds, yy) + Tp'[D(Cd~r, ds), Cdr(x)]}

[D(*,ds),*[xx,yy]]))

;; defn TpCnt, (tpd.eq), (dist)

S if (Atom(x),

0,

let{ds + fst(Tp'[D(Car,0),Car(x)])}

let{ds + fst(Tp'[D(Cdr",ds),Cdr(x)])}

D(*,ds))

;; fst laws

S if(Atom(x),

0,

let{ds -«- let{dsi -<-fst(Tp'[0, Car(x)])}D(Car,0) + dsi)}

let{ds ■«- let{c?52 -efst(Tp'[0, Cdr(x)])}D(OTr, ds) + ds2)}

D(*,ds))

;; fst laws,(tpd.sum)

S if(Atom(x),

let{ds -e D(Car, 0) + TpCnt(Car(x))}

let{ds -«. D(OTr, ds) + TpCnt(Cdr(x))}

D(*,ds))

;; (let.perm,letv), defn TpCnt

S if (Atom(x), 0, Dcnt(TpCnt(Car(x))) + TpCnt(Cdr(x)))

;; arithmetic

'-'tpcnt

86

7.4.2. Analysis of the escaping tree product pfn

The analysis of Tps is similar to that of Tp. Below we outline the main points.
First recall that Tps is defined by

> Tps(x) «- note(c)Ts(x,c)

t> Ts(x, c) <- if (Atom(x), if (Zerop(x), c(0), x), Ts(Car(x), c) * Ts(Cdr(x), c))

To analyze properties of Tp we define the pfns CellsB and NodesB where for number
trees x, CellsB(x) is the number of cells whose subtree occurs before the first zero
in a depth-first traversal of x, and NodesB(x) is the number of nodes visited before
discovering the first zero. CellsB and NodesB are defined by

> CellsB(x) <- if(Atom(x),

0,

if(lnz(Car(x)),

CellsB(Car(x)),

if(lnz(Cdr(x)),

CellsB(Car(x)) + CellsB(Cdr(x)),

1 + CellsB(Car(x)) + CellsB(Cdr(x)))))

> NodesB(x) <- if(Atom(x),

0,

if(lnz(Car(x)),

1 + NodesB(Car(x)),

2 + NodesB(Car(x)) + NodesB(Cdr(x)))))

The facts about the computation of Tps given in §2 are formalized by the theorem
(Tps.cnt).

Theorem (Tps.cnt):

(mult) count({*}, Tps(x)) = CellsB(x)

(ad) count({Car, Cdr}, Tps(x)) = NodesB(x)

Proof (Tps.cnt): Define

> TpsCnt(x) <- fst(Tps'[0,x])

§7 Derived properties and programs 87

then by the derivation theorem we need only show

(TpsCnt.mult) O = {*} =► TpsCnt(x) £ CellsB(x)

(TpsCnt.ad) 0 = {Car,Cdr} =*> TpsCnt(x) £ NodesB(x)

For this we define two auxiliary pfns TsD and B4.

> TsD(x)[<£s,c] +- if(Atom(x),

if(Zerop(x),c(x),x),

*[Ts(Car(x),c),Ts(Cdr(x),c)])D

r> B4(x,<f) <- if(Atom(x),

d,

if(lnz(Car(x)),

B4(Car(x),D(Ca7,<i)),

if(lnz(Cdr(x)),

B4(Cdr(x), D(Cd^, B4(Car(x), D(Ca7, d)))),

D(*; B4(Cdr(x), D(Cdr, B4(Car(x), D(Ca7, d))))))))

By the derived recursion theorem and assumptions on D we have

Tps'[ds,x] £ (note(c)Ts(x,c))D 2 note(c)(Ts(x,c))D S note(c)TsD(x)[ds,c])

B4 is a counter that generalizes CellsB and NodesB and we have the following

Lemma (TsD.cnt): For x e NTree d € Dint, c € Co

(0) O = {Car, Cdr} =* B4(x, d) 2 NodesB(x) + d

O = {*} =>. B4(x,cf) S CellsB(x) + d

(1) TsD(x)[d, c] s if(lnz(x), c[B4(x, d), 0], [B4(x, d), Tp(x)])

(2) Tps'[d,*] = [B4(x,<f),Tp(x)]

The proof of (0) is an ordinary induction on number trees. The proofs of (1,2)
follow the outline of the proofs of (Ts.Tp) (§6) and (Tps.Tp) (§2). (TpsCnt.mult)
and (TpsCnt.ad) follow easily from (TsD.cnt). ÖTps.cnt

57

7.5. Possible elaborations

The notion of simple derived property accounts for many of the intensional
properties of computations of interest. There are several possible elaborations that
would allow even more to be expressed.

First note that we cheated slightly in saying that the maximum stack depth is
an s.d.p. Namely it is Cdr of the s.d.p. denned in the proof of (max.stack). To fix
this we generalize s.d.p.s to be given by a primitive derivation D, an initial value
a, and an output function p. Then the given derived property of a computation
sequence S is p(ED(a)).

We can also generalize the class of primitive derivations. One possibility is for
primitive derivations to take an encoding of the computation state as an argument
(from which the rule applied can be deduced). This would allow a more complete
trace to be denned which includes for example not only the data operation names
but also the arguments. Also deriving functions for data operations could make
the cost of the operation depend on the argument.

Another possibility is to add more structure to objects such as forms and pfns
For example one could add tags to As and to data operations so that different
occurrences could be distinguished. This trick was used by [Wegbreit 1976] in an
intensional analysis of programs.

§8 Conclusions 89

8. Conclusions

We have developed an intensional semantic theory of function and control
abstractions and illustrated the use of this theory for programming and for proving
both intensional and extensional properties of programs.

The extensional theory is based on the notions of operational approximation,
equivalence, and membership. Operational approximation is a partial ordering
that abstracts the "less defined than" relation and has many of the properties of the
partial ordering in the graph model of the lambda calculus [Scott 1976], including
extensionality, restricted eta, and the least-fixed point property of the recursion
operator.1 The operational membership relation allows one to express definedness
and descriptive type information. These relations together with mechanisms for
defining subsets of the value domain are the basis for a rich theory for expressing
properties of programs. The theory presented is first-order except for the reliance
on semantic definitions of sets of values. This can be fixed by taking the approach
of [Feferman 1975,79,85] to develop a first-order theory of operations and classes
over a computational universe.

The intensional theory is based on the notion of derived property. Derived
properties of programs can be obtained by "instrumenting" the operational seman-
tics. Computation of derived properties of programs can be thought of as a "non-
standard" interpretation of programs. Programs can be transformed uniformly to
compute derived properties and hence reduce reasoning about derived properties
to reasoning about ordinary programs. We gave a systematic transformation for
obtaining derived programs based on a particular form of definition of derived
property. More generally, one could obtain derived programs by specializing an
instrumented interpreter, and a transformation from programs to corresponding
derived programs could then be obtained by specializing the specializer. These are
examples of a general technique known as partial evaluation (cf. [Jones, et. al.
1989]).

Although we obtained our extensional theory of function and control abstrac-
tions by starting with the Ihim semantic theory and extracting the key laws as
axioms one could also take the view that these axioms characterize a class of
models {Ihim being one such model) and investigate this class of models in more
depth. Such an investigation would build on the work of [Moggi 1986, 1989]. Also,
the operational semantics and derived properties or other non-standard interpre-
tations can be considered as models of a common semantic language sharing some
basic axioms. Thus we can structure the variety of interpretations of programs in

For further discussion of the relation between operational approximation and the partial
ordering induced by interpretation in Scott type domains see [Plotkin 1977].

90 §8

an algebraic framework for programming language theories. Preliminary ideas for
setting up such a framework are presented in [Talcott 1989].

An alternative approach to equational reasoning about function and control
abstractions is given in [Felleisen and Friedman 1986, Felleisen 1987, Felleisen
et. al. 1987]. Here lambda-v-c equivalence is defined by a two-level equational
calculus derived from an abstract machine similar to our state-transition semantics.
Operational equivalence includes lambda-v-c equivalence and the rules generating
lambda-v-c equivalence are provable in our theory.

Reduction calculi and operational approximation both provide a sound basis
for purely equational reasoning about programs. Calculi have the advantage that
the reduction relations are inductively generated from primitive reductions (such
as beta-conversion) by closure operations (such as transitive closure or congruence
closure). Equations proved in a calculus continue to hold when the language is
extended to treat additional language constructs. Operational approximation is,
by definition, sensitive to the set of language constructs and basic data available.'
For example, in the call-by-value lambda calculus with only algebraic operations
a do-forever loop is equivalent to the totally undefined function, for any value of
its function parameter. But in the presence of control abstractions that provide
a mechanism for escaping from or forgetting the current computation context,
until loops can be defined using the do-forever loop (cf. [Talcott 85, ChapterV])'
[Mason and Talcott 1989b] give examples of change in operational equivalence
when memory and updating is introduced. Using operational approximation we
can express and prove properties such as non-termination, computation induction,
and least fixed-points, which cannot even be expressed in a reduction calculus
framework. Finding the correct balance between insensitivity to extensions of the
language and the expressive power of operational approximation is an important
problem. Studying the laws of operational approximation and discovering natural
extensions to reduction calculi provide useful insight into this problem.

In addition to function and control abstractions, Lisp- and Scheme-like lan-
guages also provide primitives for creating and manipulating objects with memory
[Mason and Talcott 1985] gives a semantics of a language of first order recursion
equations acting on objects with memory (Lisp list structures) and gives many ex-
amples of proving program equivalence based directly on this semantics. [Mason
19S6] builds on this work. A model-theoretic equivalence called strong isomor-
phism is introduced and used as the basis for studying program equivalence and
transformational programming. Two expressions are strongly isomorphic if for any
environment and memory they are either both undefined or both reduce to the
same value and have the same effect on memory modulo production of garbage
Several decidability results are given, the laws of strong isomorphism are studied
in some detail, and many examples of proving program properties are presented

§8 Conclusions 91

including non-trivial programs such as the Robson copy algorithm and a struc-
ture editor that edits destructively (a copy of the original structure). [Felleisen
1987, 1988b] presents a two-level calculus for a scheme-like language with function,
control, and assignment abstraction. In the basic language environments bind vari-
ables to mutable objects, variables can not be treated as values, and beta-value
conversion is not a valid rule. Thus it is necessary to have two sorts of lambda
variables - assignable and non-assignable. To account for memory and sharing the
syntax is extended to include labeled values. A variety of examples of reasoning
about programs are given. It was found necessary to extend the basic calculus in
order to carry out some of the examples. [Mason and Talcott 1989b] gives an al-
ternative approach to treating programs with memory and function abstractions.
Here the call-by-value lambda calculus is extended by adding operations for creat-
ing, accessing, and updating memory cells. A syntactic representation of memory
is developed that permits computation rules to.be expressed by a reduction re-
lation on expressions. This forms a natural basis for equational reasoning about
objects with memory. The theory of operational approximation and equivalence
for this case was studied and tools were developed for proving equivalence. In
[Mason and Talcott 1989a] a formal system is presented for proving constrained
equivalence for programs with side effects. Constrained equivalence is a relation
between finite sets of constraints and a pair of expressions that holds in the case
that the expressions are strongly isomorphic in all memory contexts satisfying the
constraints. A constraint may require a variable to be an atom or cell, it may
require a variable to be equal or distinct from another variable or constant, or it
may require some component of the contents of a variable ranging over cells to be
equal to some variable or constant. The deduction system is complete for first-
order expressions that contain no occurrences of recursively defined functions and
a decision procedure has been extracted from the proof of equivalence. In the first-
order fragment strong isomorphism is the same as operational equivalence. In the
full higher-order case strong isomorphism implies operational equivalence (but not
conversely) and methods for proving strong isomorphism are useful for large classes
of problems even in the higher-order case. [Mason and Talcott 1989c] gives many
examples of applications of the theory developed in [Mason and Talcott 1989a,b]
including extending first-order examples to the higher-order case, traversing struc-
tures for effect, relating objects and behavior descriptions, and memoizing thunks
and streams. More complete surveys of reasoning about programs with memory
can be found in [Mason 1986] and [Felleisen 1987].

92
§9

9. References

Abelson, H. and G. J. Sussman

[1985] Structure and interpretation of computer programs, (The MIT Press
McGraw-Hill Book Company).

Abramsky, S. and Hankin, C. (eds.)

[1987] Abstract interpretations of applicative languages (Michael Horwood, Lon-
don)

Aczel, P.

[1977] An introduction to inductive definitions, in: Barwise 1977, pp. 739-782.

Barendregt, H.

[1981] The lambda calculus: its syntax and semantics (North-Holland, Amster-
dam).

Bürge, W.'H. .

[1971] Some examples of the use of function producing functions, in: Proceed-
238-241 3ymp03ium on sVmholic «"* algebraic manipulation, pp.

[1975str] Stream processing functions, IBM journal of research and development,
l», pp. 12-25. '

[1975rec] Recursive programming techniques, (Addison-Wesley).

Burstall, R. M.

[1968] Writing search algorithms in functional form, in: Machine intelligence S,
edited by D. Michie, (Edinburgh University Press), pp. 373-385.

Conway, M.

[1963] 39e6^Ss°f a SeparaWe transiti°n-diagram compiler, Comm. ACM,G,VT>.

Cousot, P. and Cousot, R.

[1977] Abstract interpretation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixed points, in: 1th ACM
symposium on principles of programming languages pp. 238-252.

§9 References 93

Danvy, O.

[1989] Abstracting Control (submitted for publication)

Feferman, S.

[1975] A language and axioms for explicit mathematics, in: Algebra and Logic,
Springer Lecture Notes in Mathematics, 450, pp.87-139.

[1979] Constructive theories of functions and classes, in Logic Colloquium '78,
(North-Holland) pp. 159-224.

[1982] Inductively presented systems and the formalization of meta-mathematics,
in: Logic colloquium 80, edited by D. van Dalen, D. Lascar, and J. Smiley
(North-Holland, Amsterdam) pp. 95-128.

[1985] A Theory of Variable Types, Revista Colombiana de Matematicas, 19 pp.
95-105.

Felleisen, M.

[1987] The calcului of lambda-v-cs conversion: A syntactic theory of control and
state in imperative higher-order programming languages, Ph.D. thesis,
Indiana University.

[1988a] The theory and practice of first-class prompts, 15th annual ACM Sym-
posium on principles of programming languages,, pp. 180-190.

[1988b] A-v-CS: An extended A-calculus for Scheme, in: Proceedings of the 1988
ACM conference on Lisp and functional programming, pp. 72-85.

Felleisen, M. and Friedman, D. P.

[1986] Control operators, the SECD-machine, and the A-calculus, in: Proceed-
ings of the conference on formal description of programming concepts part
III. Ebberup Denmark, August 1986.

[1987] A calculus for assignments in higher-order languages, in: Proc. 14th
ACM symposium on principles of programming languages, pp. 314-325.

Felleisen, M., Friedman, D. P., Kohlbecker E., and Druba B.

[1987] A syntactic theory of sequential control, Theoretical Computer Science

Friedman, D. P. et.al.

[1984] Fundamental abstractions of programming languages, Computer Science
Department, Indiana University.

94 §9

Goguen, J. A. and Meseguer, J.

[1983] Initiality, induction, and computability, in: Applications of algebra to
language definitions and compilation, edited by M. Nivat and J. Reynolds
(Cambridge University Press).

[1984] Equality, types, modules, and generics for logic programming, Center for
the study of language and information, Stanford University, Report No
CSLI-84-5.

Henderson, P.

[1980] Functional programming: Application and implementation, (Prentice-Hall).

Jones, N. D. and Mycroft, A.

[1986] Data flow analysis of applicative programs using minimal function graphs,
in: 13th annual ACM symposium on principles of programming lan-
guages, pp. 296-306.

Jones, N. D., Sestoft, P., and S0ndergaard, H.

[1989] Mix: A self-applicable partial evaluator for experiments in compiler gen-
eration, Lisp and Symbolic Computation, 2, pp. 9-50.

Kahn, G. and D. B. MacQueen

[1977] Coroutines and networks of parallel processes, Information processing 77
(North-Holland, Amsterdam) pp. 993-998.

Landin, P. J.

[1964] The mechanical evaluation of expressions, Computer journal, 6 pp 308-
320.

[1965] A correspondence between Algol 60 and Church's lambda notation, Comm
ACM, 8, pp. 89-101, 158-165.

[1966] The next 700 programming languages, Comm. ACM, 9, pp. 157-166.

Mason, I. A.

[1986] The semantics of destructive Lisp, Ph.D. Thesis, Stanford University.
Also as CSLI Lecture Notes No. 5, Center for the Study of Language
and Information, Stanford University.

§9 References 95

Mason, I. A. and Talcott, C. L.

[1989a] Axiomatizing operational equivalence in the presence of side effects. Fourth
annual symposium on logic in computer science, (IEEE).

[1989b] Programming, transforming, and proving with function abstractions and
memories. Proceedings of the 16th EATCS colloquium on automata, lan-
guages and programming, Stresa, Italy.

[1989c] Equivalence of programs and objects with memory: some examples, (in
preparation).

Milne, R. and C. Strachey

[1976] A theory of programming language semantics (Chapman and Hall, Lon-
don).

Moggi, E.

[1988] The partial lambda-calculus, Ph. D. thesis, University of Edinburgh.

[1989] Computational lamb da-calculus and monads, Fourth annual symposium
on logic in computer science, (IEEE).

Morris, J. H.

[1968] Lambda calculus models of programming languages, Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Moschovakis Y. N.

[1975] On the basic notions in the theory of induction, in: Logic, foundations
of mathematics, and computability theory: Proceedings of the 5th inter-
national congress of logic methodology and philosophy of science, edited
by R. E. Butts and J. Hintikka (D. Reidel, Boston) pp. 207-236.

Plotkin, G.

[1975] Call-by-name, call-by-value and the lambda-v-calculus, Theoretical Com-
puter Science, 1, pp. 125-159.

[1977] LCF considered as a programming language, Theoretical Computer Sci-
ence, 5. pp. 223-255. Queinnec, C. and Seniak, N. [1989] Puzzling with
Current Puzzle Lisp Pointers 2(3-4) pp. 4.

Rees, J., Clinger, W. (eds)

[1986] The revised3 report on the algorithmic language Scheme, Sigplan Notices,
21(12), pp. 37-79.

96 §9

Reynolds, J. C.

[1972] Definitional interpreters for higher-order programming languages, in: Pro-
ceedings, ACM national convention, pp. 717-740.

Scherlis, W. L.

[1981] Program improvement by internal specialization, in: Conference record of
the 8th annual ACM symposium on principles of programming languages,
pp. 41-49.

Schmidt, D.A.

[1986] Denotational semantics: a methodology for language development, (Allyn
and Bacon).

Scott, D.

[1976] Data types as lattices, SIAM J. of Computing, 5, pp. 522-587.

Scott, D. and C. Strachey

[1971] Towards a mathematical semantics for computer languages, Oxford Uni-
versity Computing Laboratory, Technical Monograph PRG-6.

Steele, G. L. Jr.

[1984] Common Lisp: the language (Digital Press).

Steele, G. L., and G. J. Sussman,

[1975] Scheme, an interpreter for extended lambda calculus, Artificial Intelli-
gence Laboratory, Massachusetts Institute of Technology, Technical Re-
port 349.

Talcott, C.

[1985] The essence of Thim: A theory of the intensional and extensional aspects
of Lisp-type computation, Ph. D. Thesis, Stanford University.

[1989] Algebraic methods in programming language theory (extended abstract),
in: First International Conference on algebraic methodology and software
technology, Iowa City, Iowa, (full version in preparation).

§9 References 97

Wegbreit, B.

[1975] Mechanical program analysis, Comm. ACM, 18, pp. 528-539.

[1976] Goal directed program transformation, in: Third ACM symposium on
principles of programming languages.

Wegner, P.

[1971] Data structure models for programming languages, in: Proceedings of a
symposium on data structures in programming languages, edited by J.
Tou and P. Wegner, SIGPLAN Notices, 6, pp. 1-54.

[1972] The Vienna definition language, Computing Surveys, 4, pp. 5-63.

98 §10

10. Appendix: Proofs and technical miscellaney

This appendix collects proofs and discussions of technical issues that are rel-
evant to the development of programming theories but not necessary for their
use.

10.1. Properties of operational relations

We begin by denning a family of refinements of the operational relations. The
facts operational stated in §4 are then restated and proved in more general form.

10.1.1. A refinement of operational approximation and equivalence

Operational equivalence as defined in §5 has the property that if two dtrees
are equivalent then either both are undefined or both escape (returning a value
to the top level) or both return a value to the calling context, independent of the
context. In the case of value returned, the values are equivalent. However in the
case of escaping, the values returned to the top level need not be equivalent. For
example top(Bot) £ top(l) both escape and return pfns to the top level. But, Bot
and I are clearly not equivalent values.

We can refine the operational approximation and equivalence relations to
obtain relations Cw and £w that satisfy all the properties given for C and £ and,
m addition, to have that related dtrees that escape return related values to the
top level. The refinement is obtained by taking the limit of a chain of refinements
of trivial approximation treating operational approximation as the first refinement
of trivial approximation.

> (Refining operational relations): For n € N, X a dtree, value or state, and
a < u (the least infinite ordinal).

& -" & f{ (Vyo)(Co X-* top A v0 =*> (3ui)(ü0 Qn vi A Ci >—* top A uj))

£o En+i <$i = (V7X7 V <50 Cn 7 v $1)
Ql

V0 En+1 Vi = (V7X7 A Uo Cn 7 A vi)

Xo QuXi = (Vn)(xo EnXi)
al

Xo ~Q Xl ft Xo -Q Xl A Xl -Q Xo)

§10 Appendix: Proofs and technical miscellaney 99

10.1.2. Proofs of easy consequences

Theorem (Pre-order): Cm is reflexive and transitive for all m

Proof (Pre-order): An easy consequence of the definitions (using induction
on m). O

Theorem (Refinement): If m < n then Cn is a subrelation of Cm.

Proof (Refinement): Exercise. D

Theorem (Pointwise):

V0 Qn+l Vi => \V0\ = \VX\ A (V* < |uol)(uoit En+1 "lit)

Proof (Pointwise): Exercise. D

Corollary (Pointwise): do Cm d\ <& do = d\

Theorem (Computational facts):

(i) Co ^ Cl =► Co =m Cl

(ii) Co >—► top A vo A Ci >-* top * vi =► Co Em Cl <* Uo Em Vi

Proof (Computational facts): a direct consequence of the definitions and
the unicity of the single-step relation and hence of evaluation when defined. D

Theorem (Environment substitution): If fo(s) Em+i £i(s) for all s free in
tp then (<p : f0) Em+i (^ : 6>-

Proof (Environment substitution): This is an instance of the substitution
theorem below. However it has a simple direct proof. Suppose ip has only one free
variable x and £o(x) Em+i fi- Then for any continuation 7

7 v (<P ■ £0)

=m 7 0 appc((Ax.c^ : {})) A U0 ;; computation

Cm 7 0 appc((Ax.(y? : {})) A UI ;; since v0 Cm+i vi

—m 7 v (<£ : Ci) ;; computation

The general case is an easy induction on the number of free variables in <p using
the above argument. D

*

100 §10

10.1.3. Substitution

Recall that for any semantic entity (dtrees, values, continuations, and states)
XI 1 is an entity with holes of some sort (determined by context) and that then
Xlxoj is the result of filling the hole with xo when xo is an entity of the same sort
as the holes. It is easy to see that the computation rules extend naturally to states
with holes with steps uniformly parameterized by the holes except when holes are
actually touched. A continuation hole is only touched if it is the continuation
component of a state, a dtree hole is only touched if it is the dtree component of
a begin state, an operation hole is only touched if it is the value part of an appc
continuation (see [Talcott 1985] V.3 for a similar elaboration).

Theorem (Substitution): If Xo,Xi are dtrees, continuations, or values such
that xo En+i Xi then x[xol En+i xlxil for x any dtree or value with holes of a
suitable sort.

Corollary (subst.omega): If Xo,Xl are dtrees, continuations, or values such
that xo Eu, Xi then xlxoj L x[Xl] for x any dtree, value, or state with holes of
a suitable sort.

Proof (Substitution): Let xo,Xi be continuations, dtrees, or operations. We
will prove by induction on n that xo En+i Xl implies

(i) ClXoJ En CHxiJ for any state Cl J with holes of a suitable sort, and

(") Xlxoj En+i xlxi], for any dtree or value x[1 with holes of a suitable sort.

The case xo, Xi are arbitrary values follows easily.

Clearly, u[xoJ Eo u[xij for any value u{ J with holes of a suitable sort. For
each n, (ii) follows easily from (i). By the induction hypothesis, we need only show
that (for any n) Xo En+i Xi and u[XoJ Cn u[Xi] for any value u{ J with holes of a
suitable sort implies C[xo] En C[xiJ for any state Cl 1 with holes of a suitable sort.
This is done in the lemmas below: (subst.c) for the continuation case; (subst.d)
for the dtree case; and (subst.o) for the operation case. D

Lemma (subst.c): If

■ (ret-hyp) 70 Em+i 7l (as values), and

■ (top-hyp) u[7o] Em u[7lJ for all values u[J with continuation holes

then CI70J Em Chi] for all states Cl 1 with continuation holes.

Proof (subst.c): By induction on the length of the computation of Choi
(assuming defined) and cases on the form of C[J.

Case (top): Cl 1 has the form top A U{ J. Use (top-hyp). Dtop

§10 Appendix: Proofs and technical miscellaney 101

Case (step-unif): C[J has one of the forms

7l]oifi(MWl)A"l[l
7[]oappi(<5n)AU[]

7[1 o appc(i?) ^ u[1

7[]o carti(^[])^u[]

7N°cartc(v[l)Au[]

7[]ofstc*u[]

7l] o rstc A u[]

Then there is a state Co such that CI 1 >—► Col] uniformly (with out touching the
holes). By the computation induction hypothesis we have Col7oJ Em Co[7iJ and
by the computation facts we are done. ügtep-unif

Case (hole): CI 1 has the form [] * u[]. By the top case and uniform step
arguments 70 * «[70] Em 70 A «[71]. By (ret-hyp) and computation

7o A u|7il Em topappi(u[7i]) * 70 Em topappi(u[7i]) * 7l Cm 7l A u[7lJ

Dhole °
Lemma (subst.d): If

-(ret-hyp) 6Q Em+i <$i, and

• (top-hyp) u[6oJ Em ufSxl for all values u[] with dtree holes

then C[<$o] Em Cl^il for all states CI 1 with dtree holes.

Proof (subst.d): The proof is analogous to the proof of (subst.c). The only
difference is the hole case. In this case CI 1 has the form 7[] v []. By the uniform
step argument 7|<S01 * <$o Em ffSi} v *o and by (ret-hyp) 7|[5i] v 80 Em 7[<$il *
6x. D

Lemma (subst.o): If

.(ret-hyp) t?0 Em+i i?i, and

■ (top-hyp) ufl^ol Em u[i?i] for all values u[J with operation holes

then Cl^oJ Em Cl^iJ for all states CI 1 with operation holes.

Proof (subst.o): Again, the proof is analogous to the proof of (subst.c) with
the only difference being the hole case. Here C[1 has the form 7 o appc([]) A U[j.

102 §10

7l 1 o appc(tfo) A u[J steps uniformly to a smaller computation and by (ret-hyp)
and computation

7M o appc(i?0) A u[t?!] Qm 7li9ilappi(u[t?il) A tf0

Em Tl^iJappKuIt?!]) A »J,

EmTl^iloappc^!) AUJ^J

D

10.1.4. Extensionality and recursion

Theorem (Extensionality):

(ext.op) tf0 Cn+1 »Jj ^ (Vv)(tf0(t>) En+i i?i(t;))

(ext.co) 7o Cm+1 7l <*, (Vu)(7o A V Cn 7l A „)

Proof (Extensionality): The onlyif directions are instances of the substitution
theorem. The if direction follows from (ext.op) and (ext.co) (see below) by the
same argument as for the substitution theorem. D

Lemma (ext.op): If

.(ret-hyp) 0o(v) Em+i öi(v) for all v, and

.(top-hyp) u[i?oJ Em u[tfi] for all values u[] with operation holes

then C[i?o] Em CM for all states C[1 with operation holes.

Proof (ext.op): As in the proof of (subst.o) the only non-automatic case is
where C[J has the form 7[1 o appc([J) A U[J. Here 7[J o appc(tf0) * «[] steps
uniformly to a smaller computation and by (ret-hyp) and computation

7M o appc(^o) * «M Em 7M * t?o(u[i?il)

EmTMoappc^) ^ "l^ij

D

Lemma (ext.co): If

■ (ret-hyp) 7o A U Cm 7l A V for all u, and

-(top-hyp) u[7o] Cm u[7l] for all values u[J with continuation holes

then Choi Em Chi] for all states C[1 with continuation holes.

§10 Appendix: Proofs and technical miscellaney 103

Proof (ext.co): As in the proof of (subst.c) the only non-automatic case is
where £|] has the form {] A U[]. By the top case and uniform step argument
7o A "ITOJ Em 7o * "l7il and by (ret-hyp) 70 * u[7i] Em 7l A tz^]. D

Theorem (Recursion): Let t? be a closure of XfXx.tf then the recursion op-
erator Rec computes the least fixed-point of r9 with respect to each refinement of
the operational approximation ordering.

(fix) Rec(tf) *m+1 0(Rec(0))

(min) t?(i90) Em+i t?0 =*> Rec(t?) Em+i tf0

Proof (Recursion):

Case (fix): by computation Rec(i?)(u) Sm+1 t?(Rec(#))(v) for any v. Now use
extensionality. Dgx

Case (min): By (rec.min) (see below) and the argument used in the proof of
the substitution theorem we show (by induction on m) that C[Rec(tf)] Em Cl#o}]
for any state £[J with operation holes, and tt[Rec(tf)J Em+i u[t?0)J for any value
u[1 with operation holes. C^jjj D

Lemma (rec.min): Assume i? is a closure of \f\x.ip. If

.(ret-hyp) t9(tf0) Em+i t90, and

.(top-hyp) u[Rec(tf)] Em ti[tf0] for all values u[] with operation holes

then C[Rec(i9)| Cm Cl^ol for all states ([1 with operation holes.

Proof (rec.min): As in the proof of (subst.o) the only non-automatic case is
where Cl 1 has the form y[J 0 appc(f J) A U| J. Assume that # = (\f.\x.<p : £).
Then

7[Rec(t9)l 0 appc(Rec(tf)) A u[Rec(tf)J

Cm 7lRec(t?)J v (^ : £{/ ^ Rec(tf), x + u[Rec(tf)J}) ;; computation

Em 7[^o)l " {tp : f {/ -e tfo, x -e u[#o]}) ;;' induction hypothesis

—m 7l^oJ o appc(tf(tf0)) A u[^ol ;; computation

Em T[#O] 0 appc(t?0)
Ä u[tf0] ;; (ret-hyp)

D

104 §10

Notes

We have defined a sequence of refinements of operational approximation Cn.
The motivation for developing these refinements was that while we have xo Ei Xi
implies xlxoj Ei xlxij for xo,Xi dtrees, values, or continuations and xi 1 a
dtree or value with holes of a suitable sort, it is not the case that under the same
assumption Clxoj Qi Clxil for any state C[] with holes of suitable sort. Thus
distinguishable values can be returned by 'indistinguishable' dtrees. This holds
for each refinement Cn+1. However, by taking the intersection of this chain of
approximations we have an approximation relation Hu such that for xo,Xi are
dtrees, values, or continuations Xo Ew Xi implies xfxoj C« x[Xi] for xl 1 any
dtree, value or state with holes of a suitable sort.

It is not clear what the importance of this refinement is for our language, since
all of the properties we need for our theory hold for each CB+1, i.e. CQ provides a
model for the theory for any a with 1 < a < u. However the ability to refine may
become important in the case of languages which have composable continuations or
the ability to delimit the scope of continuation capture and aborting (cf. [Felleisen
1988a], [Danvy 1989]).

10.2. Proofs of some simple derived laws

Here we fill in the details for proof of the "simple derived laws" given in the
§5.

Theorem (Laws about functions):

(lam.abs) (Vx € W)(<p0 = Vi) =► Ax.^o = \x.tpx

(op.eta) / € O =* Xz.f(z) 2 /

(cmps.id) / € O =► I o / S / £ / o I

(cmps.assoc) (/ o g) o h S'/ o (g o h)

(bot) g e O =J> Rec(A/.Ax./(x)) C g

Proof (lam.abs): Assume (Vx € V*)(<^0 = <pi) then by (letv)

(Xx.<p0)(x) ^(^0 = ^1= (Ax.^a)(x)

for all x and by (op.ext) we are done. D

Proof (op.eta): Assume / € O then by (letv) (\z.f(z))(z) a /(*) and by
(op.ext) we are done. D

Proof (cmps.id,cmps.assoc): by computation and (op.ext). D

§10 Appendix: Proofs and technical miscellaney 105

Proof (bot): by (rec.min) since by (op.eta) (Xf.Xx.f(x))(g) = g. D

Theorem (If laws):

(if.sort) <pQ € U0 A y?i € U\ => if(z,<?o, Vi) eU0UUi

(if.elim) if (z, <p,ip) = ip

(if.perm) \f(x,\i(y,<p&,<ph),'\i(y,tpc,tpd)) = if(y,if(a:,¥>»,¥>c),if(*» ¥>b, ¥>d))

(if.lam) Ax.if(z,v?i,(,i?2) — if(z, Ax.^i, Az.<£>2)

(if.subst) (^V+=^^S v?3) A (<y? S mt =» (^2 = V4) A v? € V*

=► i%,^i,v?2)^if(v?,v?3,¥'4)

Proof (if.sort): by vcases. Assume ipo € Z7o and <,<?i € t^i then

Case (z = mt): by (ifmt) and inlaws if(z,</?o,</'i) — Vo € C/'o U C7i.

Case (z € V+): by (ifnmt) and inlaws \f(z,(pQ,<pi) = <p\ €UQHU\. D

Proof (if.elim): by vcases

Case (z £ mt): if(z,y?,</?) S y> by (ifmt)

Case (z € V+): tf(z,<p,<p) = <p by (ifnmt) D

Proof (if.perm): by vcases using if laws. D

Proof (if.lam): by vcases using (op.ext). D

Proof (if.subst): Assume <p € V+ =*> y?x = <^3, (p = mt => y>2 = 94 and
9? € V*. Then

V € V+ =» if(y>,91,^2) - Vi = 93 = if(v?,V3,94)

and
9 2 mt =*> if(v?,9i,v?2) = <^2 = c^4if(v?,<^3,c^4)

and by vcases we are done. [Note that the hypothesis ip £ V* was needed in order
for vcases to apply.] D

Theorem (Cart laws):

(cart.assoc) [[y>o,Vi]> V2] - [vo, [^1,^2]]

(fst.rst) x € V+ =► fst[x,y] S fst(z) A rst[a:,y] = [rst(x),y]

106 §10

Proof (cart.assoc): Choose fresh c, x, y, z with c € Co then by the cart com-
putation laws

c([[(Vo, Vi], V2]) = (c 0 carti(y>2) o carti^))^)

c([vo,[^i,92]]) = (cocart^v?!,^]))^)

(c 0 carti(^2) 0 carti(¥?1))(a:) S(co carti(y>2) 0 cartc(x))(^!)

(c 0 carti([<^1,^2]))(x) S(co cartc(x) o carti(^2))(^i)

(c 0 carti(v?2) 0 cartc(x))(y) S (c 0 cartc([x, y]))(v?2)

(c0 cartc(x) o carti(^2))(y) S(co cartc(x) 0 cartc(y))(v?2)

(cocartc([*>y]))(*)3c[[*,y],*]

and

(c 0 cartc(x) 0 cartc(y))(*) £ c[x, [y, 2]]

hence by (op.ext), (c.ext) and the basic cart laws we are done. D

Proof (fst.rst): Assume x € V+ then

fst(x) € V ;; in laws

fst[x, y] £ fst[fst(x), [rst(x), y]] S fst(x) ;; cart and in laws

rst[x, y] £ rst[fst(x), [rst(x), y]] £ [rst(x), y] ■• cart and in laws

D

Theorem (Note laws):

(note.triv) note(c)</5 £ </? ;; c not free in 9

(note.id) note(c)c(y>) £ ^ ;; c not free in <p

(note.esc) c € Co =► c 0 (Ax.note(c)y>) = c 0 (As.p)

(note.ren) note(c)note(c')v? = note(c)v?{c'/c}

Proof (note.triv): by (c.ext) since by computation c(note(c)p) 2 c(y?). D

Proof (note.id): by (c.ext) since by computation c(note(c)c(u>)) £ cfcM)
and by (sw') c(c(<p)) 3 c(^). D "

Proof (note.esc): by (op.ext) since by computation we have

(c o Ax.note(cV)(x) £ c(note(c)<^) £ c(<p) £ (c 0 \x.^)(x)

§!0 Appendix: Proofs and technical miscellaney 107

D

Proof (note.ren): by (c.ext) since by computation we have

c(note(c)note(c')v?) = c(note(c» £ c(<p{c'/c}) S c(nalt(c)ip{c'/c})

D

10.3. Proof of context motion theorem

Theorem (context motion): Let C be an evaluated position context and let
c range over continuations. Assume Freesfo, x, c, k] l~l trap(C) = 0 and x, k are not
free in C. Then

(letx) *{x + <p}C[x*Cyi

(escape) C[c(v?)J S c(<p)

(let.dist) C[let{x -f- <^0J £ let{x -«- p}Cfo>0]

(ifdist) Cpf^^i.^^Sif^CM.C^])
(note.dist) Cjnote^Vol = note(*)let{Jb -e Jfc o Ax.C[x]}C|M

We begin with proofs of lemmas that correspond to special cases and required for
the base case in the induction on context structure.

Lemma (sw'): c,c' € Co =*► c(c'(<^)) £ c'(<p)

Proof (sw'): Assume c, c' € Co then c(c'(<p)) S c o appc(c')(v?) by (app,appi);
co appc(c')(x) £ c(c'(x)) S c'(x) by (app,appi) and (sw); and c o appc(c') £ c'
by (op.ext). DgW»

Lemma (esc.arg): c € Co =j> /(c(y?)) S c(y?)

Proof (esc.arg):

c'(/(c(v)) = c' o appc(f)(c(v)) ;; computation

S C(^) ;; (sw')

= C'(C(<P)) ;; (SW')

hence by (cabs) we are done. Desc.arg

Lemma (if.arg): /(iffccVi,^) £ if(vo,/(vi),/(¥»2»

;

108 §10

Proof (if.arg): By computation

c(/('f(Vo,^i,^2)) = co appc(/) o ifi(^i,v>2)(vo)

x^mt =► coappc(/)oifi(¥?1,(Ip2)(x)coappc(/)(^2)^coifi(/(v?1),/(()£»2))(x)

x€V+ =* coappc^oifi^^^Xx^oappcC/X^O^coifi^^i),/^))^)

Thus by value cases

c o appc(/) o ifi(v?1, y2)(x) Sico ifi(/(v?1), f(ip2))(x)

and by.(c.ext) and (op.ext) (taking c,x fresh) we are done. Dif are.

Lemma (note.if): If c is not free ip0 then

note(c)if(y?o,<?i,V>2) S if(^o,note(c)v>i,note(c)v?2)

Proof (note.if): By computation we have

(i) c(note(c)i%0,V»i,^2)) Scorfi(¥>i,v>2)(v»o)

(ii) c(i%0, note(c)v?!, note(c)y>2)) = c o ifi(note(c)v?i, note(c)v>2))(po)

(iii) x 3 mt =* co i%>i,v?2)(x) £ c(<?2) S co ifi(note(c)v?i,note(c)v?2))(x)

(iv) x € V+ =► coifi^^^Xx) ^c(v?1)Scoifi(note(cV1,note(cV2))(x)

Thus by value cases we have

c o ifi^i, v?2)(x) Sco ifi(note(c)v>i, note(c)y>2))(x)

and by (cabs) (using c not free in <p0) and (op.ext) we are done. Dj^e if

Lemma (note.arg): / € O =» /(note(c)y>) = note(c)let{c + co /}/(p)

Proof (note.arg): Assume / € O then by computation

c(/(note(c)v>)) = (c o appc(/))(note(cV)

- (c o /)(note(c)p) » using (op.eta) A*./(x) a /

^(co/Xletfc^co/}^)

^(/(letfc + co/}^))

- c(let{c -«- c o f}f(<p)) » two applications of (letv)

^c(note(c)let{c^co/}/(v?))

§10 Appendix: Proofs and technical miscellaney 109

and by cabs we are done ünote.arg

Corollary (note.let): Taking / = Ax.^o with c not free in (po we have

let{x -<- note(c)<£>}v?o — note(c)let{c + co Ax.<,<?o}let{x -<- <p}<po

Proof (letx): Assume Frees[x, <p0] 0 irap(C) = 0 and a; is not free in C. We
prove

let{s-«-po}C[*j2Cfco]

by induction on construction of C. We consider a few sample cases.

Case (I]): \et{x + <p0}x & <p0 by (id). D

Case (Co(<£i)): Choose fresh c € Co then by computation and induction hy-
pothesis

c(let{x + <po}Co[x](tpi)) S* (c o appc(Ax.CoIxl(^i)))(^o)

c(CoM(vi)) S (c o appi^OXCoM)

S (c o appi(v?i))((Ax.CoIx3)(^0))

= (co appi(v>i) o appc(Ax.C0[x]))(<^o))

c o appi(v?i) o appc(Ax.C0[x])(x) Sco appi(v>i)Co[xl

= c o appc(Ax.C0[x]](</>i))(x) ;; using x not free C\\

and by (c.ext, o.ext) we are done. D

Case (if(u,Ci,C2)): by vcases Assume v = mt then by computation and in-
duction hypothesis

let{x -t- <^0}if(u, Ci|x], C2[x]) 3 let{x -e v?o}C2[x3

= ifKCiM,C2M)

Similarly we have

veV+ =► let{x-f-v'o}if(v,C1[x],C2lxl)Sif(t;,C1M,C2[¥»oI)

D

Case (let{z-<-i;}Co): Let Ci = Co{z/u} then by computation and induction
hypothesis

let{x + <^0.}let{z -e u}C0[s] = let{x + <p0}Ci|M S d M = let{z + v}C0|M

110 §10

where the freeness condition is used in the first and third steps (let conversions)
D

Case (note(c)Co): by computation and induction hypothesis

c(let{x + ^o}note(c)Co[xJ) £ (c o appc(Ax.note(c)Co|[x]))(v?o)

c(note(c)CoM) = c(CoM) = c(\et{x -*. <p0}C0[x])

S(coappc(Aa:.Co|[xl))(Vo)

co appc(Ax.note(c)Co|[xJ)(x) £ c(note(c)Co|[xJ)

£ c(Co[xl) £ c o appc(Ax.Co[xJ)(x)

hence by (c.ext, o.ext) we are done. D

The cases /(d), [C0,¥>i], [v,d], if(C0,¥>i,¥>2), fst(C0), rst(C0), are similar to
the case Co(ipi).

Dletx

Proof (escx): Let c range over continuations and assume Frees[c, <p0]ntrap(C) =
0. Choose x fresh then

C[c(<^o)l £ let{x + c(<po)}C[x] £ c(v?0)

by (letx) and (esc.arg). Descx

Proof (let.dist): Assume Frees[x,ip0] n <rap(C) = 0 and x is not free in C.
Then

C[let{x^(^0}^l = C|(Ax.^.)(^o)l

£ let{x + ^o}C[(Ax^)(x)] ;; (letx)

£let{x^v?0}C[v'l ;;(letv)

Dlet.dist

Proof (if.dist): Assume Freest) n irap(C) = 0. We will prove

C['%o,¥>i,¥>2)] =if(^,CIft|,Ch])

by induction on the number of trapped variables in C. First we note that (by
induction on construction of C) either C has no trapped variables (is a pure
evaluation context) or we can find C0,d such that trap(C0) = 0 and such that
C = C0[let{x + v}C1j or C = C0|[note(c)CiJ

§10 Appendix: Proofs and technical miscellaney 111

Case (pure): Choose x fresh then

C[if(^o,^i,^2)l = let{x-eif(^o,9i^2)}C[x] ;; letx

£ if(<^0, let{x -e <px}C[xJ, let{x -e <p2}C[x]) ;; if.arg

= i%o,Ch],Ch]) ;;letx

Case (note):

CIi%o,^i,<^2)l = C0[note(c)Ci[if(v?o,Vi,V2)ll

= Co[note(c)if(y?o, Cilyi], Ci[v?2])l ;; induction hypothesis

= CoIif(<^o,note(c)Ci[v?i],note(c)Ci[^2l)l ;; (note.if)

= if (vo, c|M, cy2\) »Pure case

D

Case (let):

C[if(w>,¥>i.P2)l = C'oIlet{xH-v}C1Ii%o,Vi,V2)ll

= Co[let{x -«- u}if(9o, Ci[vi]5 C'i[v?2l)l ;; induction hypothesis

= CoIif(vo, let{x + ü}Ci[(^i], let{x -e t>}Ci|M)J

;; (letv) twice using x not free <po

£ if(v?o, C[</?i], CM) ;; pure case

D

^f.dist

Proof (note.dist): Assume c is not in FreesC U trap(C). We prove

C[note(c)^J £ note(c)let{c-eco Ax.C[xJ}C%]

by induction on number of trapped variables

Case (pure):

C[note(c)d|

= let{x -«- note(c)9?}C[xJ ;; (letx) choosing x fresh

£ note(c)let{c + co Ax.C[sJ}(C|[d|) ;; (note.let),(letx)

112
§10

□pure

Case (note):

C|note(cV] = C0[note(Ä:)C1[note(c)Vl] ;; since C0 is pure

SC0[note(Ä:)note(c)let{c-ecoAa:.Ci[xl}CiMJ ;; induction

£ Co[[note(c)note(fc)let{c-e k o Ax.dJxJDCi^JJ ;; note.ren

£ C0[note(c)note(fc)let{c-<- * o Ax.note(Är)Cifx]}C1[v?|l ;; note.esc

£ C0[note(c)note(fc)let{c + c o Ax.note(*)Ci[ar]}C1[^]l ;; note.ren

a C0[note(c)let{c^co A*.note(t)CiW}note(ib)CiM] ;; (letv) twice

£ note(c)let{c-e-coAaj.CoM)

;H?fi?fc? C ° Ax'note(fc)C'i W}note(*)CiN]

S note(c)let{c-t-co Ax.CoM o Ax.note(A:)C1Ix]}CoInote(Jb)C1I^l]

;; (letv)

£ note(c)let{c + co Ax.CM}C[y>] » (letx)

D

Case (let):

C[note(cVl = C0[let{y-ev}C1[note(cVU

£ C0[let{y + r}note(c)let{c -t- c o Cl}d|M|l ;; induction hypothesis

£ Colnote(c)let{c-eco Ax.letfy-eujCiIxlJletfy-f-vJdl

;; (letv)

3 note(c)let{c-t-coAs.CoM)

;; pure cSe1'*^ + ° ° AaJetfo + v)CA*l)*{y ■+■»)d |

= note(c)let{c-ecoAx.C0[x]|oAz.let{y^t;}Ci[a:]|}Co[let{y-{.t;}C1Hl
;; (let.dist)

£ note(c)let{c + c o Ax.CMKM ;; (ietx)

D

Dnote.dist

§10 Appendix: Proofs and technical miscellaney 113

10.4. Representation of Computation

We define a syntactic representation S of dtrees, values, continuations, and
states and show that computations can be simulated by chains of operational
equivalences using the computation and data laws. Let £D be the environment
mapping constants to the corresponding data and data operations. We assume
that each data element d is the value of a closed data form and let S{d) be some
such form. Then S is extended to the remaining semantic entities as follows

S{[au... ,a„]) = \S{ax),... ,«S(a„)]

S{i){x) = S(£(x))

S((V : 0) = S{M<P)

5(top) = top

5(7 o (appi(Y>) : 0)S(f) o app\(S((<p : £»

S(7*6) = app(S(7),S(6))

S(T + v) = app(S(y),S(v))

where S(£)(<p) denotes the natural extension of a map from variables to forms to
a map from forms to forms — i.e. substitution for free occurrences of variable
symbols.

Theorem (synrep):

■ (i) (S(x) : £D) = X for x a dtree, continuation or value.

• (ii) If Co >—► Ci then 5(Co) — £(&) *s provable from the computation and data
laws.

Proof (synrep.i): By induction on the structure of dtrees, continuations, and
values.

Case (data): (S(d) : &) 2 d by definition of S(d).

Case (cart):

(5([a1,...,an]):^) = ([5(a1),...,5(an)]:e2)) = [ai,...,an]

since by the induction hypothesis (S(di) : £D) = a,-.

114 §10

Case (dtree,pfn): If x = (<p : 0 and xx,..., xn are the variables in the domain
of £ then

{Six) : &>> = <S(0(*) : fc>>

S <let{x! H-5(«*I))}... Iet{snn+ £(£(*„))}<, : fc>) ;; by (letv)

— (V : 0 ;; by induction hypothesis and computation

Case (continuation): If 7 = 7o o (appi(p) : f) then

{^(7) : &>) = <5(7o)o5(0(appi(v)) : &>) = 7

since by induction hypothesis (5(70) : &>) = 7o and (S(£)(appi(<^)) : So) =
(appi(v) = 0- °i

Proof (synrep.ii): It suffices to consider single steps Co >-»» Ci and cases
according to the rule applied (as given in Figure 5). In the cases sym, lam, mt,
and top we have 5(Co) and S(d) are identical. The cases app, appi, if, cart, carti|
fst, and rst follow directly from the corresponding computation laws. For the cases'
o, appc, and sw we use the app, and appi laws in reverse to obtain

(5(7) 0 appc(S(*)))(S(t;)) ~ S(7)(S(*)($(»)))

Then we use the data laws, the letv law, or the sw law according to the sort of
d. For the carte, fstc, and rstc cases we run the computation rules backwards as
for the appc case and then use the sequence rules. For the ifi case we use the ifi
laws and the fact that any closed value form can be put in a 'canonical form using
the sequence rules, thus emptiness is decidable for such forms within the theory.
Finally the note case follows from the note law. Or

10.5. Relation to standard definition of operational relations

The standard definition of operational equivalence is trivial equivalence in
all closing contexts. More precisely, for fixed 9, we define standard operational
approximation C* by <p0 C* <px just if

top v (C%oJ : &>) C0 top v (C(M : &>)

for all contexts C (forms with holes in arbitrary positions) such that Cfao], CfaiJ
are closed (contain only data or data operation constants as free symbols).

Theorem (standard): <po Q <pi & <p0 Q" <px

Proof (standard): The onlyif direction follows from the fact that C is a
congruence on forms. For the if direction we use the fact that for any continuation
7 and environment f (extending fo) there is a context C such that

top v cyj : &D >-+ 7 v (tp ; f)

for any form ip closed by f. D

